
 1

Copyright© 1996-2002 Intel Corporation
 All rights reserved
 Issued in USA

Document No. CL-600-06

 2

Table of Contents

ABOUT INTEL(R) C++ COMPILER... 9

Welcome to the Intel® C++ Compiler ...9
What's New in This Release...9
Features and Benefits ..10
Product Web Site and Support ...10
System Requirements..11
FLEXlm* Electronic Licensing ..11
About This Document...12

How to Use This Document ..12
Related Publications ...14

Disclaimer ..16

COMPILER OPTIONS QUICK REFERENCE GUIDES 17

Options Quick Reference Guides Overview ...17
New Options in Version 6.0..18
Alphabetical Listing ..21

Compiler Options Quick Reference Guide..21
Functional Groups Listing...30

Customizing Compilation Process Options...30
Alternate Tools and Locations ... 30
Preprocessing Options .. 30
Controlling Compilation Flow... 30
Controlling Compilation Output.. 31
Debugging Options.. 31
Diagnostic Messages .. 32

Language Conformance Options ..32
Conformance Options.. 32

Application Performance Optimization Options ..32
Optimization-level Options... 32
Floating-point Arithmetic Precision .. 33
Processor Dispatch Support (IA-32 only)... 35
Interprocedural Optimizations.. 36
Profile-guided Optimizations.. 36
High-level Language Optimizations ... 37
Vectorization Options .. 37
Optimization Reports ... 38

Compiler Options Cross-Reference for Windows* and Linux*39
Compiler Options Cross Reference ..39

 3

GETTING STARTED WITH THE INTEL(R) C++ COMPILER............................ 43

Invoking the Compiler ..43
Invoking the Compiler from the Command Line..43
Invoking the Compiler from the Command Line with make...44
Compiler Input Files ...45
Default Behavior of the Compiler..46

Default Compiler Options ..46
Default Behavior of the Compiler ..48
Compilation Phases ..48

CUSTOMIZING COMPILATION ENVIRONMENT ... 50

Customizing the Compilation Environment...50
Environment Variables ...50
Configuration Files ...51
Response Files ..52
Include Files...53

CUSTOMIZING COMPILATION PROCESS.. 54

Customizing Compilation Process Overview ..54
Specifying Alternate Tools and Paths...54
Preprocessing ..55

Preprocessing Overview ...55
Preprocessing Only...56
Searching for Include Files..56
Defining Macros ..57

Compiling...60
Compilation Overview ...60
Compilation Options..60

Controlling Compilation.. 60
Monitoring Data Settings ... 61

Assembly File Listing Example ...62
Linking ...63
Debugging..64

Debugging Options Overview ...64
Preparing for Debugging ...65
Support for Symbolic Debugging ..65
Parsing for Syntax Only ..65

LANGUAGE CONFORMANCE ... 66

Conformance to the C Standard...66

 4

Conformance to the C++ Standard...68

OPTIMIZATIONS ... 69

Optimization Levels..69
Setting Optimization Levels...69
Restricting Optimizations ..70

Floating-point Optimizations...71
Restricting Floating-point Arithmetic Precision ...71

Processor Dispatch Extensions Support (IA-32 only) ...72
Targeting a Processor and Extensions Support ...72
Targeting a Processor (IA-32 only) ...72
Exclusive Specialized Code (IA-32 only) ..73
Specialized Code with -ax{i|M|K|W}..73
Combining Processor Target and Dispatch Options (IA-32 only) ...75

Interprocedural Optimizations ..76
Multifile IPO ...76

Multifile IPO Overview ... 76
Compilation with Real Object Files .. 77
Creating a Multifile IPO Executable ... 78
Creating a Multifile IPO Executable Using a Project Makefile.. 79
Creating a Library from IPO Objects.. 79
Analyzing the Effects of Multifile IPO... 80

Using -ip with -Qoption Specifiers ...80
Inline Expansion of Funtions ...81

Controlling Inline Expansion of User Functions ... 81
Criteria for Inline Function Expansion.. 82

Profile-guided Optimizations ..83
Profile-guided Optimizations Overview ...83
Profile-guided Optimizations Methodology ...83
Basic PGO Options ...84
Example of Profile-guided Optimization ..84
PGO Environment Variables ...85
Function Order List..86

Function Order List Usage Guidelines... 86
Utilities for Profile-guided Optimization.. 88

PGO API: Profile Information Generation Support..89
PGO API Support Overview .. 89
Dumping Profile Information .. 89
Resetting the Dynamic Profile Counters.. 90
Dumping and Resetting Profile Information ... 90
Interval Profile Dumping .. 90
Environment Variable .. 91

High-level Language Optimizations (HLO) ...92
HLO Overview...92

 5

Loop Transformations ...92
Loop Unrolling ...93
Absence of Loop-carried Memory Dependency with IVDEP Directive93

Parallelization...94
Parallelization Options Overview ..94
Auto Parallelization..94

Auto-parallelizer's Diagnostic .. 95
Threshold for Auto-parallelization .. 95

Parallelization with OpenMP*..95
OpenMP* Standard Options .. 96
OpenMP* Run Time Library Routines ... 98
Intel Extensions to OpenMP*... 99

Vectorization (IA-32 only) ...101
Vectorization Overview ...101
Vectorization Key Programming Guidelines ...101
Data Dependence ...102
Loop Constructs ..103
Loop Exit Conditions ...104
Types of Loops Vectorized..105
Stripmining and Cleanup...106
Statements in the Loop Body ..107
Language Support and Directives...107
Vectorization Examples...112
Loop Interchange and Subscripts: Matrix Multiply ..115

LIBRARIES .. 116

Libraries Overview ...116
Default Libraries...116
Intel® Shared Libraries ..117
Managing Libraries...118

DIAGNOSTICS AND MESSAGES... 119

Diagnostic Overview ..119
Language Diagnostics...119
Suppressing Warning Messages with lint Comments...119
Suppressing Warning Messages or Enabling Remarks..120
Limiting the Number of Errors Reported ...120
Remark Messages ..120

REFERENCE INFORMATION ... 121

Compiler Limits ..121
Compiler Limits..121

Intel C++ Key Files...122

 6

Key Files Summary for IA-32 Compiler...122
Key Files Summary for Itanium(TM) Compiler ..123

Intel C++ Intrinsics Reference ..124
Overview of the Intrinsics ..124

Types of Intrinsics.. 124
Benefits of Using Intrinsics .. 125
Naming and Usage Syntax.. 128

Intrinsics Implementation Across All IA ...129
Intrinsics For Implementation for All IA .. 129
Integer Arithmetic Related ... 129
Floating-point Related ... 130
String and Block Copy Related.. 132
Miscellaneous Intrinsics... 132

MMX(TM) Technology Intrinsics ...134
Support for MMX(TM) Technology .. 134
The EMMS Instruction: Why You Need It .. 134
EMMS Usage Guidelines... 135
MMX™ Technology General Support Intrinsics... 136
MMX(TM) Technology Packed Arithmetic Intrinsics .. 138
MMX(TM) Technology Shift Intrinsics.. 140
MMX(TM) Technology Logical Intrinsics.. 142
MMX(TM) Technology Compare Intrinsics .. 143
MMX(TM) Technology Set Intrinsics.. 144
MMX(TM) Technology Intrinsics on Itanium(TM) Architecture... 146

Streaming SIMD Extensions ...146
Intrinsics Support for Streaming SIMD Extensions .. 146
Floating-point Intrinsics for Streaming SIMD Extensions... 147
Arithmetic Operations for Streaming SIMD Extensions ... 147
Logical Operations for Streaming SIMD Extensions.. 151
Comparisons for Streaming SIMD Extensions... 152
Conversion Operations for Streaming SIMD Extensions ... 158
Load Operations for Streaming SIMD Extensions ... 160
Set Operations for Streaming SIMD Extensions.. 161
Store Operations for Streaming SIMD Extensions... 162
Cacheability Support Using Streaming SIMD Extensions.. 163
Integer Intrinsics Using Streaming SIMD Extensions .. 164
Memory and Initialization Using Streaming SIMD Extensions ... 167
Miscellaneous Intrinsics Using Streaming SIMD Extensions... 171
Using Streaming SIMD Extensions on Itanium(TM) Architecture .. 173
Macro Functions .. 174

Macro Function for Shuffle Using Streaming SIMD Extensions... 174
Macro Functions to Read and Write the Control Registers.. 175
Macro Function for Matrix Transposition.. 176

Streaming SIMD Extensions 2 ..178
Overview of Streaming SIMD Extensions 2 Intrinsics.. 178
Floating Point Intrinsics.. 179

Floating-point Arithmetic Operations for Streaming SIMD Extensions 2...................................... 179

 7

Logical Operations for Streaming SIMD Extensions 2... 183
Comparison Operations for Streaming SIMD Extensions 2... 184
Conversion Operations for Streaming SIMD Extensions 2 .. 191
Floating-point Memory and Initialization Operations.. 194

Streaming SIMD Extensions 2 Floating-point Memory and Initialization Operations 194
Load Operations for Streaming SIMD Extensions 2 .. 194
Set Operations for Streaming SIMD Extensions 2... 195
Store Operations for Streaming SIMD Extensions 2.. 196

Miscellaneous Operations for Streaming SIMD Extensions 2.. 197
Integer Intrinsics .. 198

Integer Arithmetic Operations for Streaming SIMD Extensions 2 .. 198
Integer Logical Operations for Streaming SIMD Extensions 2... 205
Integer Shift Operations for Streaming SIMD Extensions 2... 205
Integer Comparison Operations for Streaming SIMD Extensions 2... 209
Conversion Operations for Streaming SIMD Extensions 2 .. 211
Macro Function for Shuffle... 212
Cacheability Support Operations for Streaming SIMD Extensions 2 ... 212
Miscellaneous Operations for Streaming SIMD Extensions 2.. 214
Integer Memory and Initialization Operations .. 218

Streaming SIMD Extensions 2 Integer Memory and Initialization .. 218
Integer Load Operations for Streaming SIMD Extensions 2 .. 218
Integer Set Operations for Streaming SIMD Extensions 2... 219
Integer Store Operations for Streaming SIMD Extensions 2.. 221

Intrinsics for Itanium(TM) Instructions ...222
Overview of Intrinsics for Itanium(TM) Instructions.. 222
Native Intrinsics for Itanium(TM) Instructions... 222
Lock and Atomic Operation Related Intrinsics ... 224
Operating System Related Intrinsics ... 226
Itanium(TM) Conversion Intrinsics ... 229
Register Names for getReg() and setReg() ... 229
Itanium(TM) Multimedia Additions ... 232

Data Alignment, Memory Allocation Intrinsics, and Inline Assembly240
Overview of Data Alignment, Memory Allocation Intrinsics, and Inline Assembly............................ 240
Alignment Support ... 240
Allocating and Freeing Aligned Memory Blocks... 241
Inline Assembly ... 242

Intrinsics Cross-processor Implementation...244
Intrinsics Cross-processor Implementation.. 244
Intrinsics For Implementation Across All IA ... 244
MMX(TM) Technology Intrinsics Implementation... 251
Streaming SIMD Extensions Intrinsics Implementation ... 255
Streaming SIMD Extensions 2 Intrinsics Implementation .. 262

Intel C++ Class Libraries ...273
Introduction to the Class Libraries...273

Welcome to the Class Libraries ... 273
Hardware and Software Requirements.. 273
About the Classes ... 273

 8

Technical Overview...274
Details About the Libraries... 274
C++ Classes and SIMD Operations... 275
Capabilities .. 278

Integer Vector Classes..279
Integer Vector Classes .. 279
Terms, Conventions, and Syntax... 280
Rules for Operators ... 282
Assignment Operator... 284
Logical Operators .. 285
Addition and Subtraction Operators... 286
Multiplication Operators... 289
Shift Operators .. 291
Comparison Operators .. 292
Conditional Select Operators... 294
Debug.. 296
Unpack Operators ... 299
Pack Operators.. 305
Clear MMX(TM) Instructions State Operator ... 305
Integer Intrinsics for Streaming SIMD Extensions ... 306
Conversions Between Fvec and Ivec .. 307

Floating-point Vector Classes ...309
Floating-point Vector Classes.. 309
Fvec Notation Conventions.. 310
Data Alignment .. 311
Conversions... 311
Constructors and Initialization.. 311
Arithmetic Operators.. 312
Minimum and Maximum Operators.. 316
Logical Operators .. 317
Compare Operators... 319
Conditional Select Operators for Fvec Classes ... 323
Cacheability Support Operations ... 327
Debugging ... 327
Load and Store Operators ... 329
Unpack Operators for Fvec Operators... 329
Move Mask Operator ... 330

Classes Quick Reference..330
Programming Example..338

 9

About Intel(R) C++ Compiler

Welcome to the Intel® C++ Compiler
Welcome to the Intel® C++ Compiler. To use the compiler, you must have Red Hat* Linux* 7.1 or 7.2
operating system software installed on your computer.

The Red Hat Linux distributions include the GNU* C library, assembler, linker, and others. The Intel C++
Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section to gain an overview of the topics
presented. For the latest information, visit the Intel Web site:
http://developer.intel.com/design/perftool/cppontheweb.

What's New in This Release
Compiler for Two Architectures

This document combines information about Intel® C++ Compiler for IA-32-based applications and
Itanium(TM)-based applications. IA-32-based applications correspond to the applications run on any
Intel® Pentium® processor, Intel Celeron® processor, or Intel Xeon(TM).

Itanium-based applications correspond to the applications run on the Intel® Itanium(TM) processor.

The following variations of the compiler are provided for you to use according to your host system's
processor architecture:

! Intel® C++ Compiler for 32-bit Applications is designed for IA-32 systems, and its command is
icc. The IA-32 compilations run on any IA-32 Intel processor and produce applications that run
only on IA-32 systems. This compiler can be optimized specifically for the Intel Pentium processor
or Intel Pentium 4 processor.

! Intel® C++ Itanium(TM) Compiler for Itanium(TM)-based Applications is designed for Itanium
architecture systems, and its command is ecc. This compiler runs on Itanium-based systems and
produces Itanium-based applications. Itanium-based compilations can only operate on Itanium-
based systems.

 10

Features and Benefits
The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as the profile-guided optimization, prefetch
instruction and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2),
the Intel C++ Compiler provides high performance.

Feature Benefit

High Performance achieve a significant performance gain by using optimizations

Support for Streaming SIMD Extensions advantage of new Intel microarchitecture

Automatic vectorizer advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support shared memory parallel programming

Floating-point optimizations improved floating-point performance

Data prefetching improved performance due to the accelerated data delivery

Interprocedural optimizations larger application modules perform better

Profile-guided optimization improved performance based on profiling frequently-used procedures

Processor dispatch taking advantage of the latest Intel architecture features while maintaining object
code compatibility with previous generations of Intel® Pentium® processors (for
IA-32-based systems only).

Product Web Site and Support
For the latest information about Intel® C++ Compiler, visit the Intel C++ documentation Web site where
you will find links to:

! Intel C++ Compiler home page at http://developer.intel.com/software/products/compilers/c50/linux

! Related topics on the http://developer.intel.com Web site

For specific details on the Intel® Itanium(TM) architecture, visit the web site at
http://developer.intel.com/design/itanium/under_lnx.htm.

 11

System Requirements
IA-32 Processor System Requirements

! A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium 4
processor recommended).

! 128 MB of RAM (256 MB recommended).

! 100 MB of disk space

! Linux* system with glibc 2.2.2 or 2.2.4 and kernel 2.4. The compiler has been validated with Red
Hat* Linux 7.1 and 7.2.

Itanium(TM) Processor System Requirements

Note

The native compilers for Itanium-based systems run on an Itanium-based system.

! A computer with an Itanium processor.

! 256 MB of RAM

! 100 MB of disk space

! Linux system with glibc 2.2.2 or 2.2.3 and kernel 2.4. The compiler has been validated with Red
Hat Linux 7.1 and 7.2 for Intel® Itanium-based systems.

FLEXlm* Electronic Licensing
The Intel® C++ Compiler uses the GlobeTrotter* FLEXlm* licensing technology. The compiler requires
valid license file in the licenses directory in the installation path. The default directory is
/opt/intel/licenses and the license files have a file extension of .lic.

 12

About This Document
How to Use This Document
This User's Guide explains how you can use the Intel® C++ Compiler. It provides information on how to
get started with the Intel C++ Compiler, how this compiler operates and what capabilities it offers for high
performance. You learn how to use the standard and advanced compiler optimizations to gain maximum
performance of your application.

This documentation assumes that you are familiar with the C and C++ programming languages and with
the Intel processor architecture. You should also be familiar with the host computer's operating system.

Note

This document explains how information and instructions apply differently to each targeted architecture. If
there is no specific indication to either architecture, the description is applicable to both architectures.

Conventions

This documentation uses the following conventions:

This type style Indicates an element of syntax, reserved word,
keyword, filename, computer output, or part of
a program example. The text appears in
lowercase unless uppercase is significant.

This type style Indicates the exact characters you type as
input.

This type style Indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value.
Substitute one of these items for the
placeholder.

[items] Indicates that the items enclosed in brackets
are optional.

{ item1 | item2 |... } Indicates to elect one of the items listed
between braces. A vertical bar (|) separates
the items. Some options, such as -
ax{i|M|K|M}, permit the use of more than
one item.

... (ellipses) Indicate that you can repeat the preceding item.

 13

Naming Syntax for the Intrinsics

Most intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for
example, add for addition and sub for
subtraction.

<suffix> Denotes the type of data operated on by the
instruction. The first one or two letters of each
suffix denotes whether the data is packed (p),
extended packed (ep), or scalar (s). The
remaining letters denote the type:

! __s single-precision floating point

! __d double-precision floating point

! __i128 signed 128-bit integer

! __i64 signed 64-bit integer

! __u64 unsigned 64-bit integer

! __i32 signed 32-bit integer

! __u32 unsigned 32-bit integer

! __i16 signed 16-bit integer

! __u16 unsigned 16-bit integer

! __i8 signed 8-bit integer

! __u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0}; __m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0); __m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

 14

Naming Syntax for the Class Libraries

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<type><signedness><bits>vec<elements>

{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

where

<type> Indicates floating point (F) or integer (I)

<signedness> Indicates signed (s) or unsigned (u). For the
Ivec class, leaving this field blank indicates
an intermediate class. There are no unsigned
Fvec classes, therefore for the Fvec
classes, this field is blank.

<bits> Specifies the number of bits per element

<elements> Specifies the number of elements

Related Publications
The following documents provide additional information relevant to the Intel® C++ Compiler:

! ISO/IEC 9989:1990, Programming Languages--C

! ISO/IEC 14882:1998, Programming Languages--C++.

! The Annotated C++ Reference Manual, 3rd edition, Ellis, Margaret; Stroustrup, Bjarne, Addison
Wesley, 1991. Provides information on the C++ programming language.

! The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing Company, One
Jacob Way, Reading, MA 01867.

! The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W., Prentice
Hall, 1988. Provides information on the K & R definition of the C language.

! C: A Reference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall, 1991.
Provides information on the ANSI standard and extensions of the C language.

! Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel Corporation,
doc. number 243190.

! Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual,
Intel Corporation, doc. number 243191.

! Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel
Corporation, doc. number 243192.

! Intel® Itanium(TM) Assembler User's Guide.

! Intel® Itanium(TM)-based Assembly Language Reference Manual.

 15

! Itanium(TM) Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

! Itanium(TM) Architecture Software Developer's Manual Vol. 2: System Architecture, Intel
Corporation, doc. number 245318-001.

! Itanium(TM) Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

! Itanium(TM) Architecture Software Developer's Manual Vol. 4: Itanium(TM) Processor
Programmer's Guide, Intel Corporation, doc. number 245319-001.

! Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.

! Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number 241618.

! Intel Architecture MMX(TM) Technology Programmer's Reference Manual, Intel Corporation, doc.
number 241618.

! Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc. number
242693.

! Pentium® II Processor Developer's Manual, Intel Corporation, doc. number 243502-001.

! Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.

! Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-005.

Most Intel documents are also available from the Intel Corporation Web site at http://www.intel.com.

 16

Disclaimer
This Intel® C++ Compiler User's Guide as well as the software described in it is furnished under license
and may only be used or copied in accordance with the terms of the license. The information in this
manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document or any software that may be provided in
association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever,
and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions
at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® C++ Compiler may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Copyright © Intel Corporation 1996-2002.

Intel, Pentium, Itanium, Xeon, Celeron, and MMX are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

 17

Compiler Options Quick Reference
Guides

Options Quick Reference Guides
Overview
Conventions Used in the Options Quick Guide Tables

Convention Definition

[-] indicates that if option includes the "-", the option is disabled.

[d] if present, indicates that the debug mode is implemented.

[n] indicates that the value n in [] can be omitted or have various values.

Values in {} with vertical bars are used for option's version; for example, option -i{2|4|8} has
these versions: -i2, -i4, -i8.

{n} indicates that option must include one of the fixed values for n.

Words in this style following an option indicate option's required argument(s). Arguments are separated by
comma if more than one are required.

 18

New Options in Version 6.0
! Options specific to the Itanium(TM) architecture (Itanium-based systems only)

! Options available for both IA-32 and Itanium architecture

Option Description Default

-falias Assume aliasing in program. ON

-fno-alias Assume no aliasing in program. OFF

-ffnalias Assume aliasing within functions. ON

-fno-fnalias Assume no aliasing within functions, but
assume aliasing across calls.

OFF

-fcode-asm Produce assembly file with optional code
annotations.

OFF

-fsource-asm Produce assembly file with optional source
annotations.

OFF

-fverbose-asm Produce assembly file with compiler
comments.

ON

-fnverbose-asm Produce assembly file with no compiler
comments.

OFF

-ftz
Itanium-based systems only

Flushes denormal results to zero. OFF

-IPF_fma[-]
Itanium-based systems only

Enable [disable] the combining of floating-
point multiplies and add/subtract
operations.

OFF

-IPF_fltacc[-]
Itanium-based systems only

Enable [disable] optimizations that affect
floating point accuracy.

OFF

-IPF_flt_eval_method0
Itanium-based systems only

Floating-point operands evaluated to the
precision indicated by program.

OFF

-IPF_fp_speculationmode
Itanium-based systems only

Enable floating-point speculations with the
following mode conditions:

! fast - speculate floating-point
operations

! safe - speculate only when
safe

! strict - same as off

! off - disables speculation of
floating-point operations

OFF

-ivdep_parallel
Itanium-based systems only

This option indicates there is absolutely no
loop-carried memory dependency in the
loop where IVDEP directive is specified.

OFF

-openmpP Same as openmp (parallel). OFF

 19

Option Description Default

-openmpS Enables the user to compile OpenMP*
programs in sequential mode. The openmp
directives are ignored, and a stub OpenMP
library is linked (sequential).

OFF

-opt_report Generates an optimization report directed
to stderr, unless -
opt_report_file is specified.

OFF

-opt_report_filefilename Specifies the filename for the
optimization report. It is not necessary to
invoke -opt_report when this option
is specified.

OFF

-opt_report_level[level] Specifies the verbosity level of the
output. Valid level arguments:

! min

! med

! max

If a level is not specified, min is used
by default.

OFF

-opt_report_phasephase Specifies the compilation phase for
which reports are generated. The option
can be used multiple times in the same
compilation to get output from multiple
phases.
 Valid phase arguments:

! ipo: Interprocedural Optimizer

! hlo: High Level Optimizer

! ilo: Intermediate Language
Scalar Optimizer

! ecg: Electron Code Generator

! omp: OpenMP*

! all: All phases

OFF

-
opt_report_routine[substr
ing]

Specifies a routine substring.
Reports from all routines with names that
include substring as part of the name
are generated. By default, reports for all
routines are generated.

OFF

-opt_report_help Displays all possible settings for -
opt_report_phase. No compilation
is performed.

OFF

-parallel Detects parallel loops capable of being
executed safely in parallel and
automatically generates multithreaded
code for these loops.

OFF

 20

Option Description Default

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic
levels 0, 1, 2, or 3 as follows:

! -par_report0: no
diagnostic information is
displayed.

! -par_report1: indicates
loops successfully auto-
parallelized (default).

! -par_report2: loops
successfully and unsccessfully
auto-parallelized.

! -par_report3: same as 2
plus additional information about
any proven or assumed
dependences inhibiting auto-
parallelization.

OFF

-par_thresholdn Sets a threshold for the auto-parallelization
of loops based on the probability of
profitable execution of the loop in parallel,
n=0 to 100. This option is used for loops
whose computation work volume cannot be
determined at compile time.

! -par_threshold0: loops
get auto-parallelized regardless
of computation work volume.

! -par_threshold100:
loops get auto-parallelized only if
profitable parallel execution is
almost certain.

OFF

-x[type] All source files found subsequent to -
x[type] will be recognized as one of
the following types:

! c: C source file

! c++: C++ source file

! c-header: C header file

! cpp-output: C
preprocessed file

! assembler: Assembly file

! assembler-with-cpp:
Assembly file that needs to be
preprocessed.

! none: Disable recognition and
revert to file extension.

OFF

 21

Alphabetical Listing
Compiler Options Quick Reference Guide
This topic provides you with a reference to all the compilation control options and some linker control
options.

! Options specific to IA-32 architecture

! Options specific to the Itanium(TM) architecture

! Options available for both IA-32 and Itanium(TM) architecture

Option Description Default

-0f_check
IA-32 only

Avoids the incorrect decoding of certain 0f instructions for
code targeted at older processors.

OFF

-A- Disables all predefined macros. OFF

-[no]align
IA-32 only

Analyze and reorder memory layout for variables and arrays. OFF

-Aname[(value)] Associates a symbol name with the specified sequence of
value . Equivalent to an #assert preprocessing
directive.

OFF

-ansi[-] Enables [disables] assumption of the program's ANSI
conformance.

OFF

-ax{i|M|K|W}
IA-32 only

Generates specialized code for processor-specific codes i, M,
K, W while also generating generic IA-32 code.

! i = Pentium® Pro and Pentium II processor
instructions

! M = MMX(TM) instructions

! K = streaming SIMD extensions

! W = Pentium 4 processor instructions

OFF

-C Places comments in preprocessed source output. OFF

-c Stops the compilation process after an object file has been
generated. The compiler generates an object file for each C or
C++ source file or preprocessed source file. Also takes an
assembler file and invokes the assembler to generate an
object file.

OFF

-Dname[{=|#}value] Defines a macro name and associates it with the specified
value .

OFF

-dryrun Show driver tool commands but do not execute tools. OFF

-E Stops the compilation process after the C or C++ source files
have been preprocessed, and writes the results to stdout.

OFF

-EP Preprocess to stdout omitting #line directives. OFF

 22

Option Description Default

-falias Assume aliasing in program. ON

-fcode-asm Produce assembly file with optional code annotations. OFF

-fno-alias Assume no aliasing in program. OFF

-ffnalias Assume aliasing within functions ON

-fno-fnalais Assume no aliasing within functions, but assume aliasing
across calls.

OFF

-f[no]verbose-asm Produce assembly file with compiler components. ON

-fp
IA-32 only

Use EBP stack frame for all functions. OFF

-fpic, -fPic Generate position independent code. OFF

-fp_port
 IA-32 only

Round fp results at assignments and casts. Some speed
impact.

OFF

-fr32
Itanium-based systems only

Use only lower 32 floating-point registers. OFF

-fsource-asm Produce assembly file with optional code annotations.

-ftz
Itanium-based systems only

Flushes denormal results to zero. OFF

-g Generates symbolic debugging information in the object code
for use by source-level debuggers.

OFF

-H Print "include" file order; don't compile. OFF

-help Prints compiler options summary. OFF

-Idirectory Specifies an additional directory to search for include
files.

OFF

-i_dynamic Link Intel provided libraries dynamically. OFF

-inline_debug_info Preserve the source position of inlined code instead of
assigning the call-site source position to inlined code.

OFF

-ip Enables interprocedural optimizations for single file
compilation.

OFF

-IPF_fma[-]
Itanium-based systems only

Enable [disable] the combining of floating-point multiplies and
add/subtract operations.

OFF

-IPF_fltacc[-]
Itanium-based systems only

Enable [disable] optimizations that affect floating-point
accuracy.

OFF

-IPF_flt_eval_method0
Itanium-based systems only

Floating-point operands evaluated to the precision indicated by
the program.

OFF

 23

Option Description Default

-IPF_fp_speculationmode
Itanium-based systems only

Enable floating-point speculations with the following mode
conditions:

! fast - speculate floating-point operations

! safe - speculate only when safe

! strict - same as off

! off - disables speculation of floating-point
operations

OFF

-ip_no_inlining Disables inlining that would result from the -ip
interprocedural optimization, but has no effect on other
interprocedural optimizations.

OFF

-ip_no_pinlining Disable partial inlining. Requires -ip or -ipo. OFF

-ipo Enables interprocedural optimizations across files. OFF

-ipo_c Generates a multifile object file (ipo_out.o) that can be
used in further link steps.

OFF

-ipo_obj Forces the compiler to create real object files when used with
-ipo.

OFF

-ipo_S Generates a multifile assembly file named ipo_out.s that
can be used in further link steps.

OFF

-ivdep_parallel
Itanium-based systems only

This option indicates there is absolutely no loop-carried
memory dependency in the loop where IVDEP directive is
specified.

OFF

-Kc++ Compile all source or unrecognized file types as C++ source
files.

OFF

-Kc++eh Enable C++ exception handling. ON

-Knopic, -KNOPIC
Itanium-based systems only

Don't generate position independent code. OFF

-KPIC, -Kpic Generate position independent code. OFF for IA-32
ON for Itanium-
based systems

-Ldirectory Instruct linker to search directory for libraries. OFF

-long_double
IA-32 only

Changes the default size of the long double data type from 64
to 80 bits.

OFF

-M Generates makefile dependency lines for each source file,
based on the #include lines found in the source file.

OFF

-mp Favors conformance to the ANSI C and IEEE 754 standards
for floating-point arithmetic.

OFF

-mp1 Improve floating-point precision (speed impact is less than -
mp).

OFF

 24

Option Description Default

-nobss_init Places variables that are initialized with zeroes in the DATA
section. Disables placement of zero-initialized variables in
BSS (use DATA).

OFF

-no_cpprt Do not link in C++ run time libraries. OFF

-nolib_inline Disables inline expansion of standard library functions. OFF

-nostartfiles Do not use standard startup files when linking. OFF

-nostdlib Do not use standard libraries and startup files when linking. OFF

-O Same as -O1 on IA-32. Same as -O2 on Itanium-based
systems.

OFF

-O0 Disables optimizations. OFF

-O1 Enable optimizations. Optimizes for speed. For Itanium
compiler, -O1 turns off software pipelining to reduce code
size.

OFF

-O2 Same as -O1 on IA-32. Same as -O on Itanium-based
systems.

ON

-O3 Enable -O2 plus more aggressive optimizations that may
increase the compilation time. Impact on performance is
application dependent, some applications may not see a
performance improvement.

OFF

-ofile Name output file . OFF

-openmp Enables the parallelizer to generate multi-threaded code
based on the OpenMP* directives. The -openmp option only
works at an optimization level of -O2 (the default) or higher.

OFF

-openmp_report{0|1|2} Controls the OpenMP* parallelizer's diagnostic levels. -
openmp_rep
ort1

-openmpP Same as openmp (parallel). OFF

-openmpS Enables the user to compile OpenMP* programs in sequential
mode. The openmp directives are ignored, and a stub
OpenMP library is linked (sequential).

OFF

-opt_report Generates an optimization report directed to stderr, unless
-opt_report_file is specified.

OFF

-opt_report_filefilename Specifies the filename for the optimization report. It is not
necessary to invoke -opt_report when this option is
specified.

OFF

 25

Option Description Default

-opt_report_level[level] Specifies the verbosity level of the output. Valid level
arguments:

! min

! med

! max

If a level is not specified, min is used by default.

OFF

-opt_report_phasename Specifies the compilation phase for which reports are
generated. The option can be used multiple times in the same
compilation to get output from multiple phases.
 Valid phase arguments:

! ipo: Interprocedural Optimizer

! hlo: High Level Optimizer

! ilo: Intermediate Language Scalar Optimizer

! ecg: Electron Code Generator

! omp: OpenMP*

! all: All phases

OFF

-opt_report_routinesubstring Specifies a routine substring. Reports from all routines
with names that include substring as part of the name
are generated. By default, reports for all routines are
generated.

OFF

-opt_report_help Displays all possible settings for -opt_report_phase.
No compilation is performed.

OFF

-P, -F Stops the compilation process after C or C++ source files have
been preprocessed and writes the results to files named
according to the compiler's default file-naming conventions.

OFF

-parallel Detects parallel loops capable of being executed safely in
parallel and automatically generates multithreaded code for
these loops.

OFF

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

! -par_report0: no diagnostic information is
displayed.

! -par_report1: indicates loops successfully
auto-parallelized (default).

! -par_report2: loops successfully and
unsccessfully auto-parallelized.

! -par_report3: same as 2 plus additional
information about any proven or assumed
dependences inhibiting auto-parallelization.

OFF

 26

Option Description Default

-par_threshold[n] Sets a threshold for the auto-parallelization of loops based on
the probability of profitable execution of the loop in parallel,
n=0 to 100. This option is used for loops whose computation
work volume cannot be determined at compile time.

! -par_threshold0: loops get auto-
parallelized regardless of computation work volume.

! -par_threshold100: loops get auto-
parallelized only if profitable parallel execution is
almost certain.

OFF

-pc32
IA-32 only

Set internal FPU precision to 24-bit significand. OFF

-pc64
IA-32 only

Set internal FPU precision to 53-bit significand. ON

-pc80
IA-32 only

Set internal FPU precision to 64-bit significand. OFF

-prec_div
IA-32 only

Disables the floating point division-to-multiplication
optimization. Improves precision of floating-point divides.

OFF

-prof_dir dirname Specify the directory (dirname) to hold profile information
(*.dyn, *.dpi).

OFF

-prof_file filename Specify the filename for profiling summary file. OFF

-prof_gen[x] Instruments the program to prepare for instrumented execution
and also creates a new static profile information file (.spi).
With the x qualifier, extra information is gathered.

OFF

-prof_use Uses dynamic feedback information. OFF

-Qansi[-]
Itanium-based systems only

Enable [disable] stating ANSI compliance of the compiled
program and that optimizations can be based on the ANSI
rules.

ON

-Qinstall dir Sets dir as root of compiler installation. OFF

-Qlocation,tool,path Sets path as the location of the tool specified by tool . OFF

-Qoption,tool,list Passes an argument list to another tool in the
compilation sequence, such as the assembler or linker.

OFF

-qp, -p Compile and link for function profiling with UNIX* prof
tool

OFF

-rcd
IA-32 only

Disables changing of the FPU rounding control. Enables fast
float-to-int conversions.

OFF

-restrict Enables pointer disambiguation with the restrict
qualifier.

OFF

-S Generates assembly files with .s suffix, then stops the
compilation.

OFF

-shared Produce a shared object. OFF

 27

Option Description Default

-size_lp64
Itanium-based systems only

Assume 64-bit size for long and pointer types. OFF

-sox[-]
IA-32 only

Enables [disables] the saving of compiler options and version
information in the executable file. NOTE: This option is
maintained for compatibility only on Itanium(TM)-based
systems.

ON

-static Prevents linking with shared libraries. OFF

-syntax Checks the syntax of a program and stops the compilation
process after the C or C++ source files and preprocessed
source files have been parsed. Generates no code and
produces no output files. Warnings and messages appear on
stderr.

OFF

-tpp5
IA-32 only

Targets the optimizations to the Intel® Pentium® processor. OFF

-tpp6
IA-32 only

Targets the optimizations to the Intel Pentium Pro, Pentium II
and Pentium III processors.

ON (IA-32)
OFF(Itanium-
based systems)

-tpp7
IA-32 only

Tunes code to favor the Intel Pentium 4 processor. OFF

-Uname Suppresses any definition of a macro name. Equivalent to a
#undef preprocessing directive.

OFF

-unroll0
Itanium-based systems only

Disable loop unrolling. OFF

-unroll[n]
IA-32 only

Set maximum number of times to unroll loops. Omit n to use
default heuristics. Use n =0 to disable loop unroller.

OFF

-use_asm Produce objects through assembler. OFF

-use_msasm
 IA-32 only

Accept the Microsoft* MASM-style inlined assembly format
instead of GNU-style.

OFF

-u symbol Pretend the symbol is defined. OFF

-V Display compiler version information. OFF

-vec[-]
IA-32 only

Enable [disable] the vectorizer. ON

 28

Option Description Default

-vec_report[n]
IA-32 only

Controls the amount of vectorizer diagnostic information.

! n =0 no diagnostic information

! n =1 indicates vectorized loops (DEFAULT)

! n =2 indicates vectorized/non-vectorized loops

! n =3 indicates vectorized/non-vectorized loops and
prohibiting data dependence information

! n =4 indicates non-vectorized loops

! n =5 indicates non-vectorized loops and prohibiting
data

-
vec_report
1

-w Disable all warnings. OFF

-wn Control diagnostics.

! n =0 displays errors
(same as -w)

! n =1 displays warnings and errors (DEFAULT)

! n =2 displays remarks, warnings, and errors

OFF

-wdL1[,L2,...] Disables diagnostics L1 through LN. OFF

-weL1[,L2,...] Changes severity of diagnostics L1 through LN to error. OFF

-wnn Limits the number of errors displayed prior to aborting
compilation to n .

n=100

-wp_ipo Compile all objects over entire program with multifile
interprocedural optimizations. This option additionally makes
the whole program assumption that all variables and functions
seen in compiled sources are referenced only within those
sources; the user must guarantee that this assumption is safe.

OFF

-wrL1[,L2,...] Changes the severity of diagnostics L1 through LN to remark. OFF

-wwL1[,L2,...] Changes severity of diagnostics L1 through LN to warning. OFF

-Wl,o1[,o2,...] Pass options o1, o2, etc. to the linker for processing. OFF

 29

Option Description Default

-xtype All source files found subsequent to -xtype will be
recognized as one of the following types:

! c - C source file

! c++ - C++ source file

! c-header - C header file

! cpp-output - C preprocessed file

! assembler - assembly file

! assembler-with-cpp - Assembly file that
needs to be preprocessed.

! none - Disable recognition and revert to file
extension.

OFF

-X Removes the standard directories from the list of directories to
be searched for include files.

OFF

-Xa Select extended ANSI C dialect. OFF

-Xc, -ansi Select strict ANSI conformance dialect. OFF

-x{i|M|K|W}
IA-32 only

Generates specialized code to run exclusively on processors
supporting the extensions indicated by processor-specific
codes i, M, K, W.

! i = Pentium® Pro and Pentium II processor
instructions

! M = MMX(TM) instructions

! K = streaming SIMD extensions

! W = Pentium 4 processor instructions

OFF

-Xlinker val Pass val directly to the linker for processing. OFF

-Zp{1|2|4|8|16} Specifies the strictest alignment constraint for structure and
union types as one of the following: 1, 2, 4, 8, or 16 bytes.

-Zp16

 30

Functional Groups Listing
Customizing Compilation Process Options
Alternate Tools and Locations
Option Description

-Qlocation,tool,path Allows you to specify the path for tools such as the assembler, linker,
preprocessor, and compiler.

-Qoption,tool,optlist Passes an option specified by optlist to a tool, where optlist is a
comma-separated list of options.

Preprocessing Options
Option Description

-Aname[(values,...)] Associates a symbol name with the specified sequence of values .
Equivalent to an #assert preprocessing directive.

-A- Causes all predefined macros (other than those beginning with __ and assertions
to be inactive.

-C Preserves comments in preprocessed source output.

-Dname[(value)] Defines the macro name and associates it with the specified value . The
default (-Dname) defines a macro with a value of 1.

-E Directs the preprocessor to expand your source module and write the result to
standard output.

-EP Same as -E but does not include #line directives in the output.

-P Directs the preprocessor to expand your source module and store the result in a
file in the current directory.

-Uname Suppresses any automatic definition for the specified macro name .

Controlling Compilation Flow
Option Description

-c Stops the compilation process after an object file has been generated. The
compiler generates an object file for each C or C++ source file or preprocessed
source file. Also takes an assembler file and invokes the assembler to generate an
object file.

-Kpic, -KPIC Generate position-independent code.

-lname Link with a library indicated in name.

 31

Option Description

-nobss_init Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been preprocessed
and writes the results to files named according to the compiler's default file-naming
conventions.

-S Generates assembly files with .s suffix, then stops the compilation.

-sox[-]
Itanium(TM)-based systems only

Enables [disables] the saving of compiler options and version information in the
executable file.

-Zp{1|2|4|8|16} Specifies the strictest alignment constraint for structure and union types as one of
the following: 1, 2, 4, 8, or 16 bytes.

-0f_check
IA-32 only

Avoids the incorrect decoding of certain 0f instructions for code targeted at older
processors.

Controlling Compilation Output
Option Description

-Ldirectory Instruct linker to search directory for libraries.

-oname Produces an executable output file with the specified file name , or the default file
name if file name is not specified.

-S Generates assembly files with .s suffix, then stops the compilation.

Debugging Options
Option Description

-g Debugging information produced, -O0 enabled, -fp enabled for IA-32-targeted
compilations.

-g -O2 Debugging information produced, -O2 optimizations enabled, -fp disabled for
IA-32-targeted compilations.

-g -O3 -fp Debugging information produced, -O3 optimizations enabled, -fp enabled for
IA-32-targeted compilations.

-g -ip Limited debugging information produced due to function inlining optimization, -ip
option enabled.

 32

Diagnostic Messages
Option Description

-w0,-w Displays error messages only. Both -w0 and -w display exactly the same
messages.

-w1,-w2 Displays warnings and error messages. Both -w1 and -w2 display exactly the
same messages.The compiler uses this level as the default.

Language Conformance Options
Conformance Options
Option Description

-ansi[-] Enables [disables] assumption of the program's ANSI conformance.

-mp Favors conformance to the ANSI C and IEEE 754 standards for floating-point
arithmetic. Behavior for NaN comparisons does not conform.

Application Performance Optimization Options
Optimization-level Options
Option Description

-O0 Disables optimizations.

-O1 Enables optimizations. Optimizes for speed. -O1 disables inline expansion of
library functions. For Itanium(TM) compiler, -O1 turns off software pipelining to
reduce code size.

-O2 Equivalent to option -O1.

-O3 Builds on -O1 and -O2 by enabling high-level optimization. This level does not
guarantee higher performance unless loop and memory access transformation
take place. In conjunction with -axK/-xK, this switch causes the compiler to
perform more aggressive data dependency analysis than for -O2. This may result
in longer compilation times.

* -fp is an IA-32 only option and not applicable to compilations targeted for Itanium(TM)-based systems.

 33

Floating-point Arithmetic Precision

Options for IA-32 and Itanium(TM)-based Systems

Option Description

-mp The -mp option restricts optimization to maintain declared precision and to ensure
that floating-point arithmetic conforms more closely to the ANSI and IEEE
standards. For most programs, specifying this option adversely affects
performance. If you are not sure whether your application needs this option, try
compiling and running your program both with and without it to evaluate the effects
on performance versus precision. Specifying this option has the following effects
on program compilation:

! User variables declared as floating-point types are not assigned to
registers.

! Whenever an expression is spilled, it is spilled as 80 bits (extended
precision), not 64 bits (double precision).

! Floating-point arithmetic comparisons conform to IEEE 754 except for
NaN behavior.

! The exact operations specified in the code are performed. For example,
division is never changed to multiplication by the reciprocal.

! The compiler performs floating-point operations in the order specified
without reassociation.

! The compiler does not perform the constant-folding optimization on
floating-point values. Constant folding also eliminates any multiplication
by 1, division by 1, and addition or subtraction of 0. For example, code
that adds 0.0 to a number is executed exactly as written. Compile-time
floating-point arithmetic is not performed to ensure that floating-point
exceptions are also maintained.

! Floating-point operations conform to ANSI C. When assignments to type
float and double are made, the precision is rounded from 80 bits
(extended) down to 32 bits (float) or 64 bits (double). When you do not
specify -Op, the extra bits of precision are not always rounded before
the variable is reused.

! The -nolib_inline option, which disables inline functions
expansion, is used.

Note: The -nolib_inline and -mp options are active by default when you
choose the -Xc (strict ANSI C conformance) option.

-long_double Use -long_double to change the size of the long double type to 80 bits. The
Intel compiler's defalt long double type is 64 bits in size, the same as the double
type. This option introduces a number of incompatibilities with other files compiled
without this option and with calls to library routines. Therefore, Intel recommends
that the use of long double variables be local to a single file when you compile with
this option.

 34

Options for IA-32 Only

Caution

A change of the default precision control or rounding mode (for example, by using the -pc32 flag or by
user intervention) may affect the results returned by some of the mathematical functions.

Option Description

-mp1 Use the -mp1 option to improve floating-point precision. -mp1 disables fewer
optimizations and has less impact on performance than -mp.

-prec_div With some optimizations, such as -xK and -xW, the Intel® C++ Compiler
changes floating-point division computations into multiplication by the reciprocal of
the denominator. For example, A/B is computed as A x (1/B) to improve the speed
of the computation. However, for values of B greater than 2126, the value of 1/B is
"flushed" (changed) to 0. When it is important to maintain the value of 1/B, use -
prec_div to disable the floating-point division-to-multiplication optimization.
The result of -prec_div is greater accuracy with some loss of performance.

-pcn Use the -pcn option to enable floating-point significand precision control. Some
floating-point algorithms are sensitive to the accuracy of the significand or
fractional part of the floating-point value. For example, iterative operations like
division and finding the square root can run faster if you lower the precision with
the -pcn option. Set n to one of the following values to round the significand to
the indicated number of bits:

! -pc32: 24 bits (single precision) -- See Caution statement above.

! -pc64: 53 bits (single precision)

! -pc80: 64 bits (single precision)

The default value for n is 64, indicating double precision.

-rcd The Intel compiler uses the -rcd option to improve the performance of code that
requires floating-point-to-integer conversions. The optimization is obtained by
controlling the change of the rounding mode. The system default floating point
rounding mode is round-to-nearest. This means that values are rounded during
floating point calculations. However, the C language requires floating point values
to be truncated when a conversion to an integer is involved. To do this, the
compiler must change the rounding mode to truncation before each floating point-
to-integer conversion and change it back afterwards. The -rcd option disables
the change to truncation of the rounding mode for all floating point calculations,
including floating point-to-integer conversions. Turning on this option can improve
performance, but floating point conversions to integer will not conform to C
semantics.

 35

Processor Dispatch Support (IA-32 only)
Option Description

-tpp5 Optimizes for the Intel® Pentium® processor.
 Enables best performance for Pentium processor

-tpp6 Optimizes for the Intel Pentium Pro, Pentium II, and Pentium III processors.
Enables best performance for the above processors

-tpp7 Optimizes for the Pentium 4 processor. Requires the RedHat* Linux* 7.1 and
support of Streaming SIMD Extensions 2.
 Enables best performance for Pentium 4 processor

-ax{i|M|K|W} Generates, in a single binary, code specialized to the extensions specified by the
codes:

! i Pentium Pro, Pentium II processors

! M Pentium with MMX(TM) technology processor

! K Pentium III processor

! W Pentium 4 processor

In addition, -ax generates generic IA-32 code. The generic code is usually
slower.

-x{i|M|K|W} Generate specialized code to run exclusively on the processors supporting the
extensions indicated by the codes:

! i Pentium Pro, Pentium II processors

! M Pentium with MMX(TM) technology processor

! K Pentium III processor

! W Pentium 4 processor

 36

Interprocedural Optimizations
Option Description

-ip Enables interprocedural optimizations for single file compilation.

-ip_no_inlining Disables inlining that would result from the -ip interprocedural optimization, but
has no effect on other interprocedural optimizations.

-ipo Enables interprocedural optimizations across files.

-ipo_c Generates a multifile object file that can be used in further link steps.

-ipo_obj Forces the compiler to create real object files when used with -ipo.

-ipo_S Generates a multifile assembly file named ipo_out.asm that can be used in further
link steps.

-inline_debug_info Preserve the source position of inlined code instead of assigning the call-site
source position to inlined code.

-nolib_inline Disables inline expansion of standard library functions.

-wp_ipo Compile all objects over entire program with multifile interprocedural optimizations.
This option additionally makes the whole program assumption that all variables
and functions seen in compiled sources are referenced only within those sources;
the user must guarantee that this assumption is safe.

Profile-guided Optimizations
Option Description

-prof_gen[x] Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution. NOTE: The dynamic information files are
produced in phase 2 when you run the instrumented executable.

-prof_use Instructs the compiler to produce a profile-optimized executable and merges
available dynamic information (.dyn) files into a pgopti.dpi file. If you perform
multiple executions of the instrumented program, -prof_use merges the
dynamic information files again and overwrites the previous pgopti.dpi file.

-prof_dirdir Specifies the directory (dir) to hold profile information in the profiling output files,
*.dyn and *.dpi.

-prof_filefile Specifies file name for profiling summary file.

 37

High-level Language Optimizations
Option Description

-openmp Enables the parallelizer to generate multi-threaded code based on the OpenMP*
directives.
 Enables parallel execution on both uni- and multiprocessor systems.

-openmp_report{0|1|2} Controls the OpenMP* parallelizer's diagnostic levels 0, 1, or 2:

! 0 - no information

! 1 - loops, regions, and sections parallelized (default)

! 2 - same as 1 plus master construct, single construct, etc.

-unroll[n]

Set maximum number (n) of times to unroll loops. Omit n to use default
heuristics. Use n =0 to disable loop unrolling. For Itanium(TM)-based
applications, -unroll[0] used only for compatibility.

IA-32 Applications Only

-prefetch[-] Enables or disables prefetch insertion (requires -O3). Reduces wait time;
optimum use is determined empirically.

Vectorization Options
Option Description

-ax{i|M|K|W} Enables the vectorizer and generates specialized and generic IA-32 code. The
generic code is usually slower than the specialized code. -vec- disables
vectorization, but processor-specific code continues to be generated.

-x{i|M|K|W} Turns on the vectorizer and generates processor-specific specialized code. -
vec- disables vectorization, but processor-specific code continues to be
generated.

-vec_reportn Controls the vectorizer's level of diagnostic messages:

! n =0 no diagnostic information is displayed.

! n =1 display diagnostics indicating loops successfully vectorized
(default).

! n =2 same as n =1, plus diagnostics indicating loops not successfully
vectorized.

! n =3 same as n =2, plus additional information about any proven or
assumed dependences.

 38

Optimization Reports
Option Description

-opt_report Generates optimizations report and directs to stderr.

-opt_report_filefilename Specifies the filename for the optimizations report.

-opt_report_level{min|med|max} Specifies the detail level of the optimizations report.
Default: -opt_report_levelmin

-opt_report_phasephase Specifies the optimization to generate the report for. Can be specified multiple
times on the command line for multiple optimizations.

-opt_report_help Prints to the screen all available phases for
-opt_report_phase.

-opt_report_routinesubstring Generates reports from all routines with names containing the substring
as part of their name. If not specified, reports from all routines are generated.

 39

Compiler Options Cross-Reference for
Windows* and Linux*
Compiler Options Cross Reference
Linux* Windows* Description Default

-0f -QI0f Enable/disable the patch for the Pentium®
0f erratum.

OFF

-A[-] -QA[-] Remove all predefined macros. OFF

-Aname[(val)] -QAname[(val)] Create an assertion name having value val. OFF

-ansi[-] -Qansi[-] Enable/disable assumption of ANSI
conformance.

ON

-ax{i|K|M|W} -Qax{i|K|M|W} Generate code specialized for processor
extensions specified by codes (i,K,M,W)
while also generating generic IA-32 code.

! i = Pentium® Pro and Pentium II
processor instructions

! K = Steaming SIMD extensions

! M = MMX(TM)

! W = Streaming SIMD Extensions 2

OFF

-C -C Don't strip comments. OFF

-c -c Compile to object (.o) only, do not link. OFF

-
Dname[{=|#}{text}]

-Dname[=value] Define macro. OFF

-E -E Preprocess to stdout. OFF

-fp -Oy- Use EBP-based stack frame for all functions. OFF

-g -Zi Produce symbolic debug information in object
file.

OFF

-H -Hn Print include file order. OFF

-help -help Print help message listing. OFF

-Idirectory -Idirectory Add directory to include file search path. OFF

-inline_debug_info -Qinline_debug_info Preserve the source position of inlined code
instead of assigning the call-site source
position to inlined code.

OFF

-ip -Qip Enable single-file IP optimizations (within
files).

OFF

 40

Linux* Windows* Description Default

-ip_no_inlining -Qip_no_inlining Optimize the behavior of IP: disable full and
partial inlining (requires -ip or -ipo).

OFF

-ipo -Qipo Enable multifile IP optimizations (between
files).

OFF

-ipo_obj -Qipo_obj Optimize the behavior of IP: force generation
of real object files (requires -ipo).

OFF

-KPIC NA Generate position independent code (same
as -Kpic).

OFF

-Kpic NA Generate position independent code (same
as -KPIC).

OFF

-long_double -Qlong_double Enable 80-bit long double. OFF

-m NA Instruct linker to produce map file. OFF

-M -QM Generate makefile dependency information. OFF

-mp -Op[-] Maintain floating-point precision (disables
some optimizations).

OFF

-mp1 -Qprec Improve floating-point precision (speed
impact is less than -mp).

OFF

-nobss_init NA Disable placement of zero-initialized variables
in BSS (use DATA).

OFF

-nolib_inline -Oi[-] Disable inline expansion of intrinsic functions. OFF

-O -O2 OFF

-ofile -ofile Name output file. OFF

-O0 -Od Disable optimizations. OFF

-O1 -O1 Optimizes for speed. OFF

-O2 -O2 ON

-P -EP Preprocess to file. OFF

-pc32 -Qpc 32 Set internal FPU precision to 24-bit
significand.

OFF

-pc64 -Qpc 64 Set internal FPU precision to 53-bit
significand.

ON

-pc80 -Qpc 80 Set internal FPU precision to 64-bit
significand.

OFF

-prec_div -Qprec_div Improve precision of floating-point divides
(some speed impact).

OFF

-prof_dir
directory

-Qprof_dir directory Specify directory for profiling output files
(*.dyn and *.dpi).

OFF

 41

Linux* Windows* Description Default

-prof_file
filename

NA Specify filename for profiling summary file. OFF

-prof_gen[x] -Qprof_genx Instrument program for profiling; with the x
qualifier, extra information is gathered.

OFF

-prof_use -Qprof_use Enable use of profiling information during
optimization.

OFF

-Qinstall dir NA Set dir as root of compiler installation. OFF

-Qlocation,str,dir -Qlocation, tool, path Set dir as the location of tool specified by
str.

OFF

-Qoption,str,opts -Qoption, tool, list Pass options opts to tool specified by str. OFF

-qp, -p NA Compile and link for function profiling with
UNIX gprof tool.

OFF

-w2 -w2 Enable remarks, warnings and errors. OFF

-rcd -Qrcd Enable fast floating-point-to-integer
conversions.

OFF

-restrict -Qrestrict Enable the restrict keyword for
disambiguating pointers.

OFF

-S -S Generates assembly files with .s suffix, then
stops the compilation.

OFF

-sox[-] -Qsox Enable (default)/disable saving of compiler
options and version in the executable.

ON

-syntax -Zs Perform syntax check only. OFF

-tpp5 -G5 Optimize for Pentium processor. OFF

-tpp6 -G6 Optimize for Pentium Pro, Pentium II and
Pentium III processors.

OFF

-tpp7 -G7 Optimize for Pentium 4 processor. OFF

-Uname -U name Remove predefined macro. OFF

-unroll[n] -Qunrolln Set maximum number of times to unroll loops.
Omit n to use default heuristics. Use n=0 to
disable loop unroller.

OFF

-V -V text Display compiler version information. OFF

-w -w Display errors. OFF

-wn -Wn Control diagnostics. Display errors (n=0).
Display warnings and errors (n=1). Display
remarks, warnings, and errors (n=2).

OFF

-wdL1[,L2,...] -Qwd[tag] Disable diagnostics L1 through LN. OFF

-weL1[,L2,...] -Qwe[tag] Change severity of diagnostics L1 through LN
to error.

OFF

 42

Linux* Windows* Description Default

-wnn -Qwn[tag] Print a maximum of n errors. OFF

-wrL1[,L2,...] -Qwr[tag] Change severity of diagnostics L1 through LN
to remark.

OFF

-wwL1[,L2,...] -Qww[tag] Change severity of diagnostics L1 through LN
to warning.

OFF

-X -X Remove standard directories from include file
search path.

OFF

-x{i|K|M|W} -Qx[i|M|K|W] Generate code specialized for processor
extensions specified by codes (i,K,M,W)
while also generating generic IA-32 code.

! i = Pentium® Pro and Pentium II
processor instructions

! K = Steaming SIMD extensions

! M = MMX(TM)

! W = Streaming SIMD Extensions 2

OFF

-Xa -Ze Select extended ANSI C dialect. OFF

-Xc -Za Select strict ANSI conformance dialect. OFF

-Zp{1|2|4|8|16} -Zp[n] Specify, in bytes, alignment constraint for
structures (n =1,2,4,8,16). Default n =8.
This option overrides the default alignment of
code.

OFF

 43

Getting Started with the Intel(R) C++
Compiler

Invoking the Compiler
The ways to invoke Intel® C++ Compiler are as follows:

! Invoke directly: Running Compiler from the Command Line

! Use system make file: Running from the Command Line with make

Invoking the Compiler from the
Command Line
There are two necessary steps to invoke the Intel® C++ Compiler from the command line:

1. Set the environment variables.

2. Invoke the compiler with icc or ecc.

Note

You can also invoke the compiler with icpc and ecpc for C++ source files on IA-32 and Itaniun(TM)-
based systems respectively. The icc and ecc compiler examples in this documentation apply to C and
C++ source files.

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations for the
various components. The Intel C++ Compiler installation includes shell scripts that you can use to set
environment variables. From the command line, execute the shell script that corresponds to your
installation. With the default compiler installation, these scripts are located at:

! IA-32 Systems: /opt/intel/compiler60/ia32/bin/iccvars.sh

! Itanium(TM)-based Systems: /opt/intel/compiler60/ia64/bin/eccvars.sh

 44

Running the Shell Scripts

To run the iccvars.sh script on IA-32, enter the following on the command line:

prompt>source /opt/intel/compiler60/ia32/bin/iccvars.sh

If you want the iccvars.sh to run automatically when you start Linux*, edit your .bash_profile file
and add the same line to the end of your file:

set up environment for Intel compiler icc
source /opt/intel/compiler60/ia32/bin/iccvars.sh

The procedure is similar for running the eccvars.sh shell script on Itanium-based systems.

Invoke the Compiler

Once the environment variables are set, you can invoke the compiler for your platform:

! IA-32 Systems: prompt> icc [options] file1 [file2. . .] [linker_options]

! Itanium(TM)-based Systems: prompt>ecc [options] file1 [file2 . . .]
[linker_options]

Syntax Description

options Indicates one or more command-line options. The compiler recognizes one or
more letters preceded by a hyphen (-).

file1, file2 . . . Indicates one or more files to be processed by the compilation system. You can
specify more than one file. Use a space as a delimiter for multiple files.

linker_options Indicates options directed to the linker.

Invoking the Compiler from the
Command Line with make
To run from the command line using Intel® C++ Compiler, make sure that /usr/bin is your path. If you
use the C shell, you can edit your .cshrc file and add

setenv PATH /usr/bin:<your path>

Then you can compile as

prompt>make -f your_makefile

 45

Compiler Input Files
By default, the compiler recognizes .cc, .cpp, and .cxx files as C++ files. In examples, this
documentation uses the .cpp extension for C++ files. The compiler recognizes files with the .i and .c
extensions as C files. Also, the Intel® C++ Compiler recognizes the default filename extensions listed in
the table below.

Default Filename Extensions

Filename Interpretation Action

filename.a object library Passed to linker

filename.i C or C++ source preprocessed and expanded by the C++ preprocessor Passed to compiler

filename.o compiled object module Passed to linker

filename.s assembly file Assembled by the assembler

 46

Default Behavior of the Compiler
Default Compiler Options
! Options specific to IA-32 architecture

! Options specific to the Itanium(TM) architecture

! Options available for both IA-32 and Itanium(TM) architecture

Option Description Default Reference

-ipo_obj Forces the compiler to create
real object files when used with
-ipo.

OFF (IA-32)
 ON (Itanium-based systems)

Interprocedural Optimization
(IPO)

-O1 Enable optimizations. ON Optimization Choices

-
openmp_report{0|1|2
}

Controls the OpenMP*
parallelizer's diagnostic levels.

-openmp_report1 Parallelization With OpenMP*

-pc64
IA-32 only

Set internal FPU precision to
53-bit significand.

ON

-Qansi[-]
Itanium-based systems only

Enable [disable] stating ANSI
compliance of the compiled
program and that optimizations
can be based on the ANSI
rules.

ON

-sox[-]
IA-32 only

Enables [disables] the saving of
compiler options and version
information in the executable
file. NOTE: This option is
maintained for compatibility only
on Itanium(TM)-based systems.

ON

-tpp6
IA-32 only

Targets the optimizations to the
Intel Pentium Pro, Pentium II
and Pentium III processors.

ON Targeting a Processor and
Extensions Support

-vec[-] Enable [disable] the vectorizer. ON

 47

Option Description Default Reference

-vec_report[n]
IA-32 only

Controls the amount of
vectorizer diagnostic
nformation.

! n =0 no diagnostic
information

! n =1 indicates
vectorized loops
(DEFAULT)

! n =2 indicates
vectorized/non-
vectorized loops

! n =3 indicates
vectorized/non-
vectorized loops and
prohibiting data
dependence
information

! n =4 indicates non-
vectorized loops

! n =5 indicates non-
vectorized loops and
prohibiting data

-vec_report1 Vectorizer Quick Reference

-wn Control diagnostics.

! n =0 displays errors
(same as -w)

! n =1 displays
warnings and errors
(DEFAULT)

! n =2 displays
remarks, warnings,
and errors

-w1 Supressing Warning Messages

-wnn Limits the number of errors
displayed prior to aborting
compilation to n .

n=100 Limiting the Number of Errors
Reported

-Zp{1|2|4|8|16} Specifies the strictest alignment
constraint for structure and
union types as one of the
following: 1, 2, 4, 8, or 16 bytes.

-Zp16 Specifying Structure Tag
Alignments

 48

Default Behavior of the Compiler
If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses the
following default settings:

! Produces executable output with filename a.out.

! Invokes options specified in a configuration file first. See Configuration Files.

! Searches for include files using the INCLUDE variable.

! Searches for library files in directories specified by the LD_LIBRARY_PATH variable, if they are
not found in the current directory.

! Sets 8 bytes as the strictest alignment constraint for structures.

! Displays error and warning messages.

! Performs standard optimizations using the default -O2 option, as described in Optimization
Choices.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

IA-32-Specific Default

The vectorizor (-vec) is on by default.

Compilation Phases
To produce the executable file filename, the compiler performs by default the compile and link phases.
When invoked, the compiler driver determines which compilation phases to perform based on the
extension to the source filename and on the compilation options specified in the command line.

The compiler passes object files and any unrecognized filename to the linker. The linker then determines
whether the file is an object file (.o) or a library (.a). The compiler driver handles all types of input files
correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in the diagram
below.

 49

Application Development Cycle

 50

Customizing Compilation Environment

Customizing the Compilation
Environment
For IA-32 and the Intel® Itanium(TM) architecture, you will need to set a compilation environment. To
customize the environment used during compilation, you can specify:

! Environment Variables -- the paths where the compiler can search for special files

! Configuration Files -- the options to use with each compilation

! Response Files -- the options and files to use for individual projects

! Include Files -- the names and locations of compilation tools

Environment Variables
You can customize your environment by specifying paths where the compiler can search for special files
such as libraries and include files.

! LD_LIBRARY_PATH specifies the directory path for the math libraries. Also, the compiler calls
link, the GNU* linker, to produce an executable file from the object files. This linker searches the
path specified in the LD_LIBRARY_PATH environment variable to find the libraries. Also, the
assembler relies on LD_LIBRARY_PATH for the location of the associated libraries.

! PATH specifies the directory path for the compiler executable files.

! INCLUDE specifies the directory path for the "include" files.

! ICCCFG specifies a configuration file the compiler should use instead of the default configuration
file for the IA-32 compiler.

! ECCCFG specifies a configuration file the compiler should use instead of the default configuration
file for the Itanium(TM) compiler.

! TMP specifies the directory in which to store temporary files. If the directory specified by TMP does
not exist, the compiler places the temporary files in the current directory.

! IA32ROOT (IA32-based systems) – If you choose to install the Intel® C++ Compiler to a location
other than the default location, you will need to modify the variable IA32ROOT in your
environment to point to this location. It should point to the directory containing the bin, lib, and
include directories.

! IA64ROOT (Itanium(TM)-based systems) -- If you choose to install the Intel C++ Compiler to a
location other than the default location, you will need to modify the variable IA64ROOT in your
environment to point to this location. It should point to the directory containing the bin, lib, and
include directories.

 51

Compilation Environment Options

The Intel C++ Compiler installation includes shell scripts that you can use to set environment variables.
From the command line, execute the shell script appropriate to your installation. You can find these
scripts at the following locations (assuming you installed to the default directories):

! IA-32 Systems: /opt/intel/compiler60/ia32/bin/iccvars.sh

! Itanium(TM)-based Systems: /opt/intel/compiler60/ia64/bin/eccvars.sh

Running the Shell Scripts

To run the iccvars.sh script, enter the following on the command line:

prompt: . /opt/intel/compiler60/ia32/bin/iccvars.sh
If you want the iccvars.sh to run automatically when you start Linux, edit your .bash_profile file and add
the same line to the end of your file:

set up environment for Intel Compiler icc
. /opt/intel/compiler60/ia32/bin/iccvars.sh

Configuration Files
You can decrease the time you spend entering command-line options and ensure consistency by using
the configuration file to automate often-used command line entries. You can insert any valid command-
line options into the configuration file. The compiler processes options in the configuration file in the order
they appear followed by the command-line options that you specify when you invoke the compiler.

Note

Be aware that options in the configuration file will be executed every time you run the compiler. If you
have varying option requirements for different projects, see Response Files.

How to Use Configuration Files for IA-32 Compilations

The following example illustrates how to write configuration files for IA-32-targeted compilations. After you
have written the .CFG file, simply ensure it is in the same directory as the compiler's executable file when
you run the compiler. The text following the pound (#) character is recognized as a comment. For IA-32
compilations, the configuration file is icc.cfg.

Sample icc.cfg file.

Define preprocessor macro MY_PROJECT. -DMY_PROJECT

Additional directories to be searched for include

files, before the default. -I /project/include

 52

How to Use Configuration Files for Compilations on Itanium(TM)-
based Systems

The following example illustrates how to write configuration files targeted for compilations on Itanium(TM)-
based systems. After you have written the .CFG file, simply ensure it is in the same directory as the
compiler's executable file when you run the compiler. (The pound (#) character defines the text that
follows as a comment.) For compilations on Itanium(TM)-based systems, the configuration file is
ecc.cfg.

Sample ecc.cfg file.

Define preprocessor macro MY_PROJECT. -DMY_PROJECT

Additional directories to be searched for include

files, before the default. -I /project/include

Response Files
Use response files to specify options used during particular compilations, and to save this information in
individual files. Response files are invoked as an option in the command line. Options in a response file
are inserted in the command line at the point where the response file is invoked.

Response files are used to decrease the time spent entering command-line options, and to ensure
consistency by automating command-line entries. Use individual response files to maintain options for
specific projects; in this way you avoid editing the configuration file when changing projects.

Any number of options or filenames can be placed on a line in the response file. Several response files
can be referenced in the same command line. Use the pound character(#) to treat the rest of the line as a
comment.

The syntax for using response files is as follows:

! IA-32 Systems: prompt>icc @response_file filenames

! Itanium(TM)-based Systems: prompt>ecc @response_file filenames

Note

An "at" sign (@) must precede the name of the response file on the command line.

 53

Include Files
By default, the compiler searches for the standard include files in the directories specified in the INCLUDE
environment variable. You can indicate the location of include files in the configuration file.

How to Specify an Include Directory (-I)

Use the -Idirectory option to specify an additional directory in which to search for include files. For
multiple search directories, multiple -Idirectory commands must be used. Included files are brought
into the program with a #include preprocessor directive. The compiler searches directories for include
files in the following order:

! directory of the source file that contains the include

! directories specified by the -I option

! directories specified in the INCLUDE environment variable

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default path specified by the INCLUDE
environment variable.

You can use the -X option with the -I option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default path, do the
following:

! IA-32 Systems: prompt>icc -X -I/alt/include newmain.cpp

! Itanium(TM)-based Systems: prompt>ecc -X -I/alt/include newmain.cpp

 54

Customizing Compilation Process

Customizing Compilation Process
Overview
This section describes options that customize the compilation process—preprocessing, compiling, linking
and various compilation output and debug options.

Specifying Alternate Tools and Paths
You can direct the compiler to go outside default paths and tools to specify alternate tools for
preprocessing, compilation, assembly, and linking. Further, you can invoke options specific to your
alternate tools on the command line. The following sections explain how to use -Qlocation and -
Qoption to do this.

How to Specify an Alternate Component

Use -Qlocation to specify an alternate path for a tool. This option accepts two arguments using the
following syntax:

prompt>-Qlocation,tool,path

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

path is the complete path to the tool.

 55

How to Pass Options to Other Programs (-Qoption, tool, optlist)

Use -Qoption to pass an option specified by optlist to a tool, where optlist is a comma-separated
list of options. The syntax for this command is the following:

prompt>-Qoption,tool,optlist

tool Description

cpp Specifies the compiler front-end preprocessor.

c Specifies the C++ compiler.

asm Specifies the assembler.

ld Specifies the linker.

-optlist Indicates one or more valid argument strings for the designated program. If the argument is a
command-line option, you must include the hyphen. If the argument contains a space or tab character,
you must replace the space or tab with a comma, and enclose the entire argument in quotation
characters (""). You must separate multiple arguments with commas. The following example directs the
linker to create a memory map when the compiler produces the executable file from the source.

! IA-32 Systems: prompt>icc -Qoption,link,-Map,proto.map proto.cpp

! Itanium(TM)-based Systems: prompt>ecc -Qoption,link,-Map,proto.map
proto.cpp

The -Qoption,link option in the preceding example is passing the -map option to the linker. This is an
explicit way to pass arguments to other tools in the compilation process.

Preprocessing
Preprocessing Overview
This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file inclusion. The
compiler preprocesses files as an optional first phase of the compilation.

Preprocessor Options

Use the options in this section to control preprocessing from the command line. If you specify neither
option, the preprocessed source files are not saved but are passed directly to the compiler.

Option Description

-Aname[(value)] Associates a symbol name with the specified sequence of values . Equivalent to an
#assert preprocessing directive.

-A- Causes all predefined macros (other than those beginning with __ and assertions to be inactive.

-C Preserves comments in preprocessed source output.

-Dname[{=|#}value] Defines the macro name and associates it with the specified value . The default (-Dname
) defines a macro with a value of 1.

 56

Option Description

-E Directs the preprocessor to expand your source module and write the result to standard output.

-EP Same as -E but does not include #line directives in the output.

-P Directs the preprocessor to expand your source module and store the result in a file in the current
directory.

-Uname Suppresses any automatic definition for the specified macro name .

Preprocessing Only
Use either the -E or the -P option to preprocess your source files without compiling them.

When you specify the -E option, the compiler's preprocessor expands your source module and writes the
result to standard output. The preprocessed source contains #line directives, which the compiler uses
to determine the source file and line number during its next pass. For example, to preprocess two source
files and write them to stdout, enter the following command:

! IA-32 Systems: prompt>icc -E prog1.cpp prog2.cpp

! Itanium(TM)-based Systems: prompt>ecc -E prog1.cpp prog2.cpp

When you specify the -P option, the preprocessor expands your source module and stores the result in a
file in the current directory. There is no way to change the default name. The preprocessor uses the name
of each source file with the .i extension. For example, the following command creates two files named
prog1.i and prog2.i, which you can use as input to another compilation:

! IA-32 Systems: prompt>icc -P prog1.cpp prog2.cpp

! Itanium(TM)-based Systems: prompt>ecc -P prog1.cpp prog2.cpp

The -EP option can be used in combination with -E or -P. It directs the preprocessor to not include
#line directives in the output. Specifying -EP alone is the same as specifying -E -EP.

Caution

When you use the -P option, any existing files with the same name and extension are overwritten.

Preserving Comments in Preprocessed Source Output

Use the -C option to preserve comments in your preprocessed source output.

Searching for Include Files
By default, the compiler searches for the standard include files in the directories specified in the INCLUDE
environment variable. You can indicate the location of include files in the configuration file.

 57

How to Specify an Include Directory

Use the -Idirectory option to specify an additional directory in which to search for include files. For
multiple search directories, multiple -Idirectory commands must be used. Included files are brought
into the program with a #include preprocessor directive. The compiler searches directories for include
files in the following order:

! directory of the source file that contains the include

! directories specified by the -I option

! directories specified in the INCLUDE environment variable

How to Remove Include Directories

Use the -X option to prevent the compiler from searching the default path specified by the INCLUDE
environment variable.

You can use the -X option with the -I option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path /alt/include instead of the default path, do the
following:

! IA-32 Systems: prompt>icc -X -I/alt/include newmain.cpp

! Itanium(TM)-based Systems: prompt>ecc -X -I/alt/include newmain.cpp

Defining Macros
You can use the -A and -D options to define the assertion and macro names to be used during
preprocessing. The -U option directs the preprocessor to suppress an automatic definition of a macro.

Use the -A option to make an assertion. This option performs the same function as the #assert
preprocessor directive. The form of this option is:

-Aname[(value)]

Argument Description

name indicates an identifier for the assertion

value indicates a value for the assertion. If a value is specified, it should be quoted, along with the
parentheses delimiting it.

For example, to make an assertion for the identifier fruit with the value orange,banana use the following
command:

! IA-32 Systems: prompt>icc -A"fruit(orange,banana)" prog1.cpp

! Itanium(TM)-based Systems: prompt>ecc -A"fruit(orange,banana)" prog1.cpp

 58

The compiler provides a number of predefined macros. For a list of predefined macros available to the
Intel® C++ Compiler, see the Predefined Macros table below.

Enter -A- to suppress all predefined macros, except for those beginning with the double underscore.

Use the -D option to define a macro. This option performs the same function as the #define preprocessor
directive. The form of this option is:

-Dname[{=|#}value]

Argument Description

name The name of the macro to define.

value Indicates a value to be substituted for name. If you do not enter a value, name is set to 1. The value should be
quoted if it contains non-alphanumerics.

For example, to define a macro called SIZE with the value 100 use the following command:

! IA-32 Systems: prompt>icc -DSIZE=100 prog1.cpp

! Itanium(TM)-based Systems: prompt>ecc -DSIZE=100 prog1.cpp

Use the -Uname option to suppress any automatic definition for the specified name. The -U option
performs the same function as a #undef preprocessor directive. It can be used to undefine any macro, in
addition to the predefined onces.

For more details about preprocessor directives, see a language reference such as C: A Reference
Manual.

Predefined Macros

The predefined macros available for the Intel C++ Compiler compilations targeted for IA-32- and
Itanium(TM)-based systems are described in the tables below. The Default column describes whether the
macro is enabled (ON) or disabled (OFF) by default. The Disable column lists the option that disables the
macro; no indicates that the macro cannot be disabled.

! Predefined macros for compilations targeted for IA-32 systems

! Predefined macros for compilations targeted for Itanium(TM)-based systems

 59

Predefined Macros for Compilations Targeted for IA-32 Systems

Macro Name Value Disable Description / When Used

__INTEL_COMPILER 600 no Defines the compiler version. Defined as 600 for the Intel
C++ Compiler V6.0. Always defined.

__ICC 600 no Enables the Intel C++ Compiler. Assigned value refers to
version of the compiler (e.g., 600 is 6.00). Supported for
legacy reasons. Use __INTEL_COMPILER instead.

__cplusplus C++ only no Defined when compiling C++ source.

__EDG__ 1 no

Predefined Macros for Compilations Targeted for Itanium(TM)-based Systems

Macro Name Default Disable Description / When Used

__INTEL_COMPILER 600 no Defines the compiler version. Defined as 600 for the Intel
C++ Compiler V6.0. Always defined.

__ECC 600 no Enables the Intel C++ Compiler. Assigned value refers to
version of the compiler (e.g., 600 is 6.00). Supported for
legacy reasons. Use __INTEL_COMPILER instead.

__cplusplus C++ only no Enables compilation of C++ source.

_INTEGRAL_MAX_BITS 64 -U Indicates support for the __int64 type.

_M_IA64 64100 -U Indicates the value for the preprocessor identifier to
reflect the Itanium(TM) architecture.

 60

Compiling
Compilation Overview
This section describes the Intel® C++ Compiler options that determine the compilation process and
output. By default, the compiler converts source code directly to an executable file. Appropriate options
allow you to control the process and obtain desired output file produced by the compiler.

Having control of the compilation process means, for example, that you can create a file at any of the
compilation phases such as assembly, object, or executable with -P or -c options. Or you can name the
output file or designate a set of options that are passed to the linker with the -S, -o options. If you specify
a phase-limiting option, the compiler produces a separate output file representing the output of the last
phase that completes for each primary input file.

You can use the command-line options discussed as tools to display and check for certain aspects of the
compiler's behavior.

The options in this section provide you with the following capabilities:

! monitor the compilation to a phase or to a stage within a phase

! name the output files or directories

Compilation Options
Controlling Compilation
If no errors occur during processing, you can use the output files from a particular phase as input to a
later compiler invocation. The table below describes the options to control the output.

Last Phase
Completed

Option Compiler Input Compiler Output

compile only -c source Compile to object only (.o), do not link.

 -S source Generate assembly files with .s suffix and stops the
compilation process.

syntax checking -syntax source files
preprocessed files

diagnostic list

linking (default) source files
preprocessed files
assembly files
object files
library

executable file, map file

preprocessing -P, -E, or -Ep source files preprocessed files

 61

Monitoring Data Settings
The options described below provide monitoring the outcome of Intel compiler-generated code without
interfering with the way your program runs.

Specifying Structure Tag Alignments

You can specify an alignment constraint for structures and unions in two ways:

! place a pack pragma in your source file, or

! enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Use the -Zp option to determine the alignment constraint for structure declarations. Generally, smaller
constraints result in smaller data sections while larger constraints support faster execution.

The form of the -Zp option is:

-Zpn

The alignment constraint is indicated by one of the following values.

n=1 1 byte.

n=2 2 bytes.

n=4 4 bytes.

n=8 8 bytes

n=16 16 bytes.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in the file
prog1.cpp, use the following command:

! IA-32 Systems: prompt>icc -Zp2 prog1.cpp

! Itanium(TM)-based Systems: prompt>ecc -Zp2 prog1.cpp

Allocation of Zero-initialized Variables

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -
nobss_init option, you can place any variables that are explicitly initialized with zeros in the DATA
section if required.

Avoiding Incorrect Decoding of Certain Instructions (IA-32 Only)

Some instructions have 2-byte opcodes in which the first byte contains 0f. In rare cases, the Pentium®
processor can decode these instructions incorrectly. Specify the -0f_check option to avoid the incorrect
decoding of these instructions. The work-around implemented in the Intel® C++ Compiler avoids
generating the susceptible instructions.

 62

Assembly File Listing Example
This topic provides examples of IA-32 and Itanium(TM) architecture assembly file listings and explains
how to read them.

IA-32 Assembly Listing Example

$B1$6: ; Preds $B1$9
mov eax, edx ;6.26
shld eax, esi, 11 ;6.26
or eax, -2147483648 ;6.26
neg ecx ;6.26
add ecx, 1054 ;6.26
shr eax, cl ;6.26
test edx, edx ;6.26
jge $B1$5 ; Prob 50% ;6.26

; LOE eax ebx ebp edi

The following list describes the annotations:

! The ; Preds annotation lists all the basic-blocks that are predecessors of this basic-block.

! The ;6.26 annotation occurs next to every instruction and indicates the source line#.column
number that this instruction is associated with. When a 0 appears it means that there is no source
information associated with that particular instruction.

! The ; Prob annotation indicates the probability that the conditional jump is taken. This is based
either upon a "guess" by the compiler or from profile information from a -prof_use compilation.

! The ; LOE line is the live-on-exit registers. Generally only the integer registers, xmm, and mm
registers are printed.

Itanium(TM) Architecture Assembly Listing Example

The following is an example of a portion of an assembly file listing for compilations targeted for
Itanium(TM)-based systems:

 63

The following list describes the annotations:

! { identifies the beginning of an bundle.

! .mmi and .mib identify the instruction template types; .mmi indicates two memory and one
integer instructions; .mib indicates one memory, one integer, and one branch instruction.

! } identifies the end of an instruction bundle.

! br.call.dpnt b0=bark# identifies a call to the function bark.

! ;; identifies the end of an instruction group.

! The number following the colon (:) in the comment at the end of each instruction indicates the
source line number corresponding to that assembly language instruction.

Linking
This topic describes the options that allow you to control and customize the linking with tools and libraries
and define the output of the linking process.

Option Description

-Ldirectory Instruct linker to search directory for libraries.

-Qoption,tool,list Passes an argument list to another program in the compilation sequence, such as
the assembler or linker.

-shared This linker option instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable.

-i_dynamic This linker option can be used to specify that all Intel-provided libraries should be
linked dynamically. The comparison of the following commands illustrates the
effects of this option.

-Bstatic This linker option is used to statically link libraries at compile time. Compared to
dynamic linking, results in larger executables.

-Bdynamic This linker option is used to dynamically link libraries at run time. Compared to
static linking, results in smaller executables.

 64

Suppressing Linking

Use the -c option to suppress linking. For example, entering the following command produces the object
files file.o and file2.o:

! IA-32 Systems: prompt>icc -c file.cpp file2.cpp

! Itanium(TM)-based Systems: prompt>ecc -c file.cpp file2.cpp

Note

The preceding command does not link these files to produce an executable file.

Debugging
Debugging Options Overview
For compilations targeted to IA-32 processor systems, the compiler uses -O0 as the default when you
specify -g. Specifying the -g or -O0 option automatically enables the -fp option for IA-32-targeted
compilations. (Option -fp is not used for compilations targeted for Itanium(TM)-based systems.)

The -fp option (applies to IA-32 compilations only) is disabled by default or when -O1 or -O2 is specified
and allows the compiler to use the EBP register as a general purpose register in optimizations. However,
most debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack backtrace
unless this is so. The -fp option instructs the compiler to generate code for IA-32-targeted compilations
without turning off optimization, so that a debugger can still produce a stack backtrace. Using this option
disables use of the EBP register in optimizations, and can result in slightly less efficient code.

Options Descriptions

-g Debugging information produced, -O0 enabled, -fp enabled for IA-32-targeted
compilations.

-g -O2 Debugging information produced, -O2 optimizations enabled.

-g -O3 -fp Debugging information produced, -O3 optimizations enabled, -fp enabled for
IA-32-targeted compilations.

-g -ip Limited debugging information produced, -ip option enabled.

 65

Preparing for Debugging
Use the -g option to direct the compiler to generate code to support symbolic debugging. For example:

! IA-32 Systems: prompt>icc -g prog1.cpp

! Itanium(TM)-based Systems: prompt>ecc -g prog1.cpp

The compiler does not support the generation of debugging information in assembly files. If you specify
the -g option, the resulting object file will contain debugging information the assembly file will not.

Support for Symbolic Debugging
The compiler lets you generate code to support symbolic debugging while the -O1, or -O2 optimization
options are specified on the command line along with -g. However, you can receive these unexpected
results:

! If you specify the -O1, or -O2 options with the -g option, some of the debugging information
returned may be inaccurate as a side-effect of optimization.

! If you specify the -O1, or -O2 options, the -fp option will be disabled.

Parsing for Syntax Only
Use the -syntax option to stop processing source files after they have been parsed for C++ language
errors. This option provides a method to quickly check whether sources are syntactically and semantically
correct. The compiler creates no output file. In the following example, the compiler checks a file named
prog1.cpp. Any diagnostics appear on the standard error output.

! IA-32 Systems: prompt>icc -syntax prog1.cpp

! Itanium(TM)-based Systems: prompt>ecc -syntax prog1.cpp

 66

Language Conformance

Conformance to the C Standard
You can set the Intel® C++ Compiler to accept either

! C code that strictly adheres to the ANSI/ISO standard, or

! C code that contains extensions to this standard.

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language compilation
(ISO/IEC 9899:1990). This standard requires that conforming C compilers accept minimum translation
limits. This compiler exceeds all of the ANSI/ISO requirements for minimum translation limits.

Understanding the Extensions to ANSI/ISO Standard C Dialect

When you set the compiler to accept extensions to the ANSI/ISO standard, the compiler can process the
following extensions:

Extension Type Description

Files and data storage Input files with no declarations. Incomplete array types for the last member of a
structure, except when this is the only member of the structure. Incomplete struct
or union type file-scope arrays. Note: The struct and union types must be
completed before the array is subscripted. In addition, if the array is defined in the
compilation, these types must be subscripted by the end of the compilation. enum
tag names you define. You can declare an enum tag name and then define it later
in the source file. Initializer expressions not enclosed in braces though they
initialize any of the following: a full static array, structure, or union. (Standard C
required the braces.)

Pointers In initializers, pointer constant values cast to an integral type if the integral type is
large enough to contain it. In integral constant expressions, integer constants cast
to a pointer type and then cast back to an integral type. Assignments of pointers to
integers and to other incompatible pointer types without explicit casts. Fields
selected in the form p->m when the p variable is a pointer, including when p does
not point to a struct or union that contains m. (All definitions of field must have the
same type and offset within their structure or union.) Fields selected in the form
x.m, including when x is not a structure or union containing m when (1) variable x
is not a structure or union containing m and (2) the x variable is an Ivalue. (All
definitions of field must have the same type and offset within their structure or
union.)

Types and syntax Bit fields with enum base types or integral types other than int or unsigned int. long
float as a synonym for double. Arbitrary text at the end of preprocessing directives.
Numbers that do not comply with the pp-number syntax, because numbers are
scanned according to the syntax for numbers when extensions are allowed.
Example: The compiler would scan 0x123e+1 as three tokens. Under strict ANSI
conformance mode, the compiler would use the pp-number syntax and scan this
number as one invalid token.

Predicates #assert and #unassert directives to define and test predicate names.

 67

Extension Type Description

Syntax with warnings No warning given for an extra comma at the end of an enum list. Warning given
when omitting the final semicolon preceding the closing brace(}) of a structure or
union. Warning given for a right brace immediately following a label definition.
(Normally, a statement must follow a legal definition.) No warning given for an
empty declaration, a semicolon with nothing preceding it.

Semantics with warnings Differences in assignments and pointers between pointers to types that are
interchangeable but not identical, such as unsigned char* and char*. The compiler
will not issue a warning in this case. A string constant assigned to a pointer to any
kind of character. Comparison using >, >=, <, or <= operators between pointers to
void and other kinds of pointers, without using an explicit type cast. (Strict ANSI
dialect mode requires such comparisons using == or != and issues no warnings.)
Inline assembly code inserted using the asm keyword. (Strict ANSI dialect mode
requires the __asm keyword.) Freestanding tag declarations in the parameter
declaration list for a function with old-style parameters.

How to Set the Compiler for Extended C Dialect

You set the compiler to accept extensions to the ANSI/ISO standard C code by using the -Ze option.

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies in
accordance with this standard:

Macro Description

__cplusplus Defines C++ programs only.

__DATE__ The date of compilation. As a string literal in the form Mmm dd yyyy.

__FILE__ A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

__STDC__ The constant 1 when you set the compiler to accept only standard ANSI
conformance. This macro is not defined for use when you set the compiler to
accept extensions.

__TIME__ The time of compilation. As a string literal in the form hh:mm:ss.

__TIMESTAMP__ The date and time of the last modification of the current source file in the form:

The compiler provides predefined macros in addition to the predefined macros required by the standard.

 68

Conformance to the C++ Standard
The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language, with the following exceptions:

! Two-phase name binding in templates, as described in [temp.res] and [temp.dep] of the
standard, is implemented only with -Za compiler option.

! Universal character set escapes (for example, \uabcd) are not implemented.

! The export keyword for templates is not implemented.

 69

Optimizations

Optimization Levels
Setting Optimization Levels
Each of the command-line options: -O,-O1, -O2 and -O3 turn on several compiler optimizations. -O and
-O1 are similar and are only mentioned for compatibility with other compilers. The following table
summarizes the optimizations that the compiler applies when you invoke -O1, -O2, or -O3 optimizations.

Option Optimization Affected Aspect of Program

-O1, -O2 global register allocation register use

-O1, -O2 instruction scheduling instruction reordering

-O1, -O2 register variable detection register use

-O1, -O2 common subexpression elimination constants and expression evaluation

-O1, -O2 dead-code elimination instruction sequencing

-O1, -O2 variable renaming register use

-O1, -O2 copy propagation register use

-O1, -O2 constant propagation constants and expression evaluation

-O1, -O2 strength reduction-induction variable simplification instruction, selection-sequencing

-O1, -O2 tail recursion elimination calls, further optimization

-O1, -O2 software pipelining calls, further optimization

-O3 prefetching, scalar replacement, loop transformations memory access, instruction parallelism, predication,
software pipelining

 70

For IA-32 and Itanium(TM) architectures, the options can behave in a different way. To specify the
optimizations for your program, use options for depending on the target architecture as follows.

IA-32 and Itanium(TM) compilers

-O, -O1, -O2 Confines optimizations to the procedural level. Turns ON intrinsics inlining. All three optimizations are
equal.

-O3 Enables -O2 option with more aggressive optimizations, for example:

! prefetching

! scalar replacement

! loop transformations

Optimizes for maximum speed, but may not improve performance for some programs.

Restricting Optimizations
The following options restrict or preclude the compiler's ability to optimize your program.

Option Description

-O0 Disables all optimizations.

-nolib_inline Disable inline expansion of intrinsic functions.

 71

Floating-point Optimizations
Restricting Floating-point Arithmetic Precision
The -mp option restricts some optimizations to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards.

For most programs, specifying this option adversely affects performance. If you are not sure whether your
application needs this option, try compiling and running your program both with and without it to evaluate
the effects on performance versus precision.

Specifying this option has the following effects on program compilation:

! User variables declared as floating-point types are not assigned to registers.

! Floating-point arithmetic comparisons conform to IEEE 754 except for NaN behavior.

! The exact operations specified in the code are performed. For example, division is never changed
to multiplication by the reciprocal.

! The compiler performs floating-point operations in the order specified without reassociation.

! The compiler does not perform the constant folding on floating-point values. Constant folding also
eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For example,
code that adds 0.0 to a number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are also maintained.

! For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits (EXTENDED
PRECISION), not 64 bits (DOUBLE PRECISION). Floating-point operations conform to IEEE 754.
When assignments to type REAL and DOUBLE PRECISION are made, the precision is rounded
from 80 bits (EXTENDED) down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION). When you
do not specify -O0, the extra bits of precision are not always rounded away before the variable is
reused.

! Even if vectorization is enabled by the -xK, -xW, -axK, or -axW options, the compiler does not
vectorize reduction loops (loops computing the dot product) and loops with mixed precision types.

 72

Processor Dispatch Extensions Support
(IA-32 only)
Targeting a Processor and Extensions Support
This section describes targeting a processor and processor dispatch options. -tpp{5|6|7} optimizes
non-specifically for the IA-32 processor, while -x{i|M|K|W} and -ax{i|M|K|W} provide support to
generate processor instruction extensions that are specific to the architecture.

Option Description

-tpp{5|6|7} Schedules instructions for optimal performance on the architecture specified by 5, 6, 7

! -tpp5Pentium® processor.

! -tpp6Pentium Pro, Pentium II, and Pentium III processors. Default.

! -tpp7Pentium 4 processor.

-x{i|M|K|W} Generates specialized code to run exclusively on the processors supporting the extensions indicated by
the i, M, K, W codes.

-ax{i|M|K|W} Generates specialized code to run exclusively on the processors supporting the extensions indicated by
the i, M, K, W codes while also generating generic IA-32 code in the same executable.

For example, on a Pentium III processor, if you have mostly integer code and only a small portion of
floating-point code, you may want to compile with -axM rather than -axK because MMX(TM) technology
extensions perform the best with integer data and the optimized code will run on a larger subset of Intel
processors.

The -ax and -x options are backward compatible with the extensions supported. The Intel® Pentium 4
processor can run code targeted to any of the previous processors specified by K, M, or i.

Targeting a Processor (IA-32 only)
The Intel® C++ Compiler lets you choose whether to optimize the performance of your application for
specific processors or to ensure your application can execute on a range of processors.

Optimizing for a Specific Processor without Excluding Others

Use the -tpp{n} option to optimize your application's performance for specific processors. Regardless
of which -tpp{n} suboption you choose, your application is optimized to use all the benefits of that
processor with the resulting binary file still capable of running on any of the processors listed.

To optimize for... Use...

Pentium® and Pentium processor with MMX(TM) technology -tpp5

Pentium Pro, Pentium II and Pentium III -tpp6 (default)

Pentium 4 Processor -tpp7

 73

For example, the following commands compile and optimize the source program prog.cpp for the
Pentium Pro processor:

prompt> icc prog.cpp

prompt> icc -tpp6 prog.cpp

Exclusive Specialized Code (IA-32 only)
The -x{i|M|K|W} option specifies the minimum set of processor extensions required to exist on
processors on which you execute your program. The resulting code can contain unconditional use of the
specified processor extensions. When you use -x{i|M|K|W} the code generated by the compiler might
not execute correctly on IA-32 processors that lack the specified extensions.

The following example compiles the program myprog.cpp, using the i extension. This means the
program will require Intel® Pentium® Pro, Pentium II, or later, processors to execute.

prompt> icc -O2 tpp6 -xi -o myprog myprog.cpp

The resulting program, myprog, might not execute on a Pentium processor, but will execute on Pentium
Pro, Pentium II, Pentium III, and Pentium 4 processors.

Caution
 If a program compiled with -x{i|M|K|W} is executed on a processor that lacks the specified
extensions, it can fail with an illegal instruction exception, or display other unexpected behavior.

-x Summary

To Optimize for... Use this option

Pentium Pro and Pentium II processors, which use the CMOV, FCMOV, and FCOMI instructions -xi

Pentium processors with MMX(TM) technology instructions (does not imply i instructions). -xM

Pentium III processor with the Streaming SIMD Extensions, implies i and M instructions -xK

Pentium 4 processor with the Streaming SIMD Extensions 2, implies i, M, and K instructions -xW

Specialized Code with -ax{i|M|K|W}
When the -ax{i|M|K|W} option is used, your compiled application includes processor-specific
extensions. When the compiled application is run, it detects the extensions supported by the processor:

! If the processor supports the specialized extensions, the extensions are executed.

! If the processor does not support the specialized extensions, the extensions are not executed,
and a more generic version of the code is executed instead.

Applications compiled with -ax{i|M|K|W} have increased code size, but increased performance over
standard optimized code.

Note
 Applications that you compile with this option will execute on any Intel 32-bit processor. Such
compilations are, however, subject to any exclusive specialized code restrictions you impose during
compilation with the -x option.

 74

-ax Summary

To Optimize for... Use this option

Intel® Pentium® Pro and Pentium II processors, which use the CMOV and FCMOV, and
FCOMI instructions

-axi

Pentium processors with MMX(TM) technology instructions -axM

Pentium III processor with the Streaming SIMD Extensions, implies i and M instructions -axK

Pentium 4 processor with the Streaming SIMD Extensions 2, implies i, M, and K instructions -axW

Checking for Performance Gain

The -ax{i|M|K|W} option directs the compiler to find opportunities to generate separate versions of
functions that use instructions supported on the specified processors. If the compiler finds such an
opportunity, it first checks whether generating a processor-specific version of a function results in a
performance gain. If this is the case, the compiler generates both a processor-specific version of a
function and a generic version of that function that will run on any IA-32 architecture processor.

At run time, one of the two versions is chosen to execute depending on the processor the program is
currently running on. In this way, the program can get large performance gains on more advanced
processors, while still working properly on older processors.

The disadvantages of using -ax{i|M|K|W} are:

! The size of the compiled binary increases because it contains both a processor-specific version
and a generic version of the code.

! The runtime checks to determine which code to run slightly affect performance.

 75

Combining Processor Target and Dispatch Options
(IA-32 only)
The following table shows how to combine processor target and dispatch options to compile applications
with different optimizations and exclusions.

...without excluding... Optimize
exclusively
for... Intel®

Pentium®
Processor

Pentium
Processor
with
MMX(TM)
technology

Pentium Pro
Processor

Pentium II
Processor

Pentium III
Processor

Pentium 4
Processor

Pentium
Processor

-tpp5 -tpp5 -tpp6 -tpp6 -tpp6 -tpp7

Pentium
Processor with
MMX(TM)
technology

N-A -tpp5, -xM -tpp6, -xM -tpp6, -xM -tpp6, -xM -tpp7, -xM

Pentium Pro
Processor

N-A N-A -tpp6,-xi -tpp6,-xi -tpp6,-xi -tpp7,-xi

Pentium II
Processor

N-A N-A N-A -tpp6,-xiM -tpp6,-xiM -tpp7,-xiM

Pentium III
Processor

N-A N-A N-A N-A -tpp6,-xK -tpp7,-xK

Pentium 4
Processor

N-A N-A N-A N-A N-A -tpp7, -xW

Example of -x and -ax Combinations

If you wanted your application to

! always require the MMX(TM) technology extensions

! use Pentium Pro processor extensions when the processor it is run on offers it

! and to not use them when it does not

you could generate such an application with the following command line:

prompt>icc -O2 -xM -axi myprog.cpp

-xM above restricts the application to running on Pentium processors with MMX(TM) technology or later
processors. If you wanted to enable the application to run on earlier generations of Intel 32-bit processors
as well, you would use the following command line:

prompt>icc -O2 -axiM myprog.cpp

Note that this specifically optimized code will run only on processors that support both the i and M
extensions.

 76

Interprocedural Optimizations
Use -ip and -ipo to enable interprocedural optimizations (IPO), which allow the compiler to analyze
your code to determine where you can benefit from the optimizations listed in tables that follow.

IA-32 and Itanium(TM)-based applications

Optimization Affected Aspect of Program

inline function expansion calls, jumps, branches, and loops

interprocedural constant propagation arguments, global variables, and return values

monitoring module-level static variables further optimizations, loop invariant code

dead code elimination code size

propagation of function characteristics call deletion and call movement

multifile optimization affects the same aspects as -ip, but across multiple files

 IA-32 applications only

Optimization Affected Aspect of Program

passing arguments in registers calls, register usage

loop-invariant code motion further optimizations, loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural optimizer. For
function calls that the compiler believes are frequently executed, the compiler might decide to replace the
instructions of the call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures defined within the
current source file. However, when you use -ipo to specify multifile IPO, the compiler performs inline
function expansion for calls to procedures defined in separate files.

The IPO optimizations are disabled by default.

Multifile IPO
Multifile IPO Overview
Multifile IPO obtains potential optimization information from individual program modules of a multifile
program. Using the information, the compiler performs optimizations across modules.

Building a program is divided into two phases: compilation and linkage. Multifile IPO performs different
work depending on whether the compilation, linkage or both are performed.

 77

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the source
code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile IPO.
Generating mock files instead of real object files reduces the time spent in the multifile IPO compilation
phase. Each mock object file contains the IR for its corresponding source file, but no real code or data.
These mock objects must be linked using the -ipo option and icc, or using the xild tool.

Note

Failure to link "mock" objects with icc, -ipo, or xild will result in linkage errors. There are situations
where mock object files cannot be used. See Compilation with Real Object Files for more information.

Linkage Phase

When you specify -ipo, the compiler is invoked a final time before the linker. The compiler performs
multifile IPO across all object files that have an IR.

Note

The compiler does not support multifile IPO for static libraries (.a files). See Compilation with Real Object
Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program automatically. If a whole
program is detected, the interprocedural constant propagation, stack frame alignment, data layout and
padding of common blocks optimizations perform more efficiently, while more dead functions get deleted.
This option is safe.

-wp_ipo is a whole program assertion flag that tells the compiler the whole program is present. It
enables multifile optimization with the whole program assumption that all user variables and user
functions seen in the compiled sources are referenced only within those sources. This is an unsafe
option. The user must guarantee that this assumption is safe.

Compilation with Real Object Files
In certain situations you might need to generate real object files with -ipo. To force the compiler to
produce real object files instead of "mock" ones with IPO, you must specify -ipo_obj in addition to -ipo.

Use of -ipo_obj is necessary under the following conditions:

! The objects produced by the compilation phase of -ipo will be placed in a static library without
the use of xild or xild -lib. The compiler does not support multifile IPO for static libraries, so
all static libraries are passed to the linker. Linking with a static library that contains "mock" object
files will result in linkage errors because the objects do not contain real code or data. Specifying -
ipo_obj causes the compiler to generate object files that can be used in static libraries.

! Alternatively, if you create the static library using xild or xild -lib, then the resulting static
library will work as a normal library.

! The objects produced by the compilation phase of -ipo might be linked without the -ipo option
and without the use of xild.

 78

! You want to generate an assembly listing for each source file (using -S) while compiling with -
ipo. If you use -ipo with -S, but without -ipo_obj, the compiler issues a warning and an
empty assembly file is produced for each compiled source file.

Creating a Multifile IPO Executable
This topic describes how to enable multifile IPO for compilations targeted for IA-32 and Itanium(TM)-
based systems.

Procedure for IA-32 Systems

Compile your modules with -ipo as follows:

prompt>icc -ipo -c a.cpp b.cpp c.cpp

Use -c to stop compilation after generating .o files. Each object file has the IR for the corresponding
source file. With preceding results, you can now optimize interprocedurally:

prompt>icc -ipo a.out b.out c.out

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to the link stage.
For efficiency, combine steps 1 and 2:

prompt>icc -ipo a.cpp b.cpp c.cpp

Procedure for Itanium(TM)-based Systems

Compile your modules with -ipo as follows:

prompt>ecc -ipo -c a.cpp b.cpp c.cpp

Use -c to stop compilation after generating .o files. Each object file has the IR for the corresponding
source file. With preceding results, you can now optimize interprocedurally:

prompt>ecc -ipo a.out b.out c.out

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to link stage. For
efficiency, combine steps 1 and 2:

prompt>ecc -ipo a.cpp b.cpp c.cpp

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO with
profile information for further optimization.

 79

Creating a Multifile IPO Executable Using a Project Makefile
Most applications use a makefile or something similar to call a linker such as link. This is done
automatically when you compile and link with the compiler. Therefore, when -ipo must result in a
separate linking step, you must use the Intel linker driver xild instead, as follows:

prompt>xild -ipo link_command_line

-ipo optional; enables additional IPO diagnostic output

link_command_line is your linker command line

Use of -ipo is optional with xild for Multifile IPO in providing additional diagnostic output. You can use
the xild syntax when you use a makefile instead of step 2 in the example Creating a Multifile IPO
Executable. The following example places the multifile IPO executable in file name:

prompt>xild -o:filename a.out b.out c.out

Note

The -ipo option can reorder object files and linker arguments on the command line. Therefore, if your
program relies on a precise order of arguments on the command line, -ipo can cause your program to
have incorrect behavior.

Creating a Library from IPO Objects
Normally, libraries are created using a library manager such as ar. Given a list of objects, the library
manager will insert the objects into a named library to be used in subsequent link steps.

prompt>xiar user.a a.out b.out

A library named user.a will be created containing a.out and b.o.

If, however, the objects have been created using -ipo -c, then the objects will not contain a valid object
but only the intermediate representation (IR) for that object file.

prompt>icc -ipo -c a.cpp b.cpp

will produce a.out and b.o that only contains IR to be used in a link time compilation. The library
manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xild -ar. This program will invoke the compiler on the
IR saved in the object file and generate a valid object that can be inserted in a library.

prompt>xild -o user.a

 80

Analyzing the Effects of Multifile IPO
The -ipo_c and -ipo_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the -ipo_c option to optimize across files and produce an object file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized object file.
The default name for this file is ipo_out.o.

Use the -ipo_S option to optimize across files and produce an assembly file. This option performs
optimizations as described for -ipo, but stops prior to the final link stage, leaving an optimized assembly
file. The default name for this file is ipo_out.s.

See Inline Expansion of Functions.

Using -ip with -Qoption Specifiers
Use -Qoption with the applicable keywords to select particular inline expansions and loop optimizations.
The option must be entered with a -ip or -ipo specification, as follows:

-ip -Qoption,tool,opts]

where tool is C++ (c) and opts are -Qoption specifiers (see below).

-option Specifiers

If you specify -ip or -ipo without any -Qoption qualification, the compiler

! expands functions in line

! propagates constant arguments

! passes arguments in registers

! monitors module-level static variables.

You can refine interprocedural optimizations by using the following -Qoption specifiers. To have an
effect, the -Qoption option must be entered with either -ip or -ipo also specified, as in this example:

-ip -Qoption,c,ip_specifier

where ip_specifier is one of the specifiers described in the table that follows.

 81

-option Specifiers

-ip_args_in_regs=FALSE Disables the passing of arguments in registers. By default, external functions can
pass arguments in registers when called locally. Normally, only static functions can
pass arguments in registers, provided the address of the function is not taken and
the function does not use a variable number of arguments.

-ip_ninl_max_stats=n Sets the valid max number of intermediate language statements for a function that
is expanded in line. The number n is a positive integer. The number of
intermediate language statements usually exceeds the actual number of source
language statements. The default is set to the maximum number of 200.

-ip_ninl_min_stats=n Sets the valid min number of intermediate language statements for a function that
is expanded in line. The number n is a positive integer. The default value for
ip_ninl_min_stats is:

! IA-32 compiler: ip_ninl_min_stats = 7

! Itanium(TM) compiler: ip_ninl_min_stats = 15

-ip_ninl_max_total_stats=n Sets the maximum increase in the total_stats. The number of intermediate
language statements for each function that is expanded in line. The number is a
positive integer. By default, each function can increase to a maximum of 5000
statements.

-ip_no_external_ref Indicates that the source file contains the main program and does not contain
functions that are referenced by external functions. If you do not specify this
option, the compiler retains an original copy of each expanded in-line function.

The following command activates procedural and interprocedural optimizations on source.cpp and sets
the maximum increase in the number of intermediate language statements to 5 for each function:

prompt>icc -ip -Qoption,c,-ip_ninl_max_stats=5 source.cpp

Inline Expansion of Funtions
Controlling Inline Expansion of User Functions
The compiler enables you to control the amount of inline function expansion, with the options shown in
the following summary.

-ip_no_inlining This option is only useful if -ip is also specified. In this case, -ip_no_inlining disables
inlining that would result from the -ip interprocedural optimizations, but has no effect on other
interprocedural optimizations.

ip_no_pinlining Disables partial inlining; can be used if -ip or -ipo is also specified.

 82

Criteria for Inline Function Expansion
For a routine to be considered for inlining, it has to meet certain minimum criteria. There are criteria to be
met by the call-site, the caller, and the callee.

! The call-site is the site of the call to the function that might be inlined.

! The caller is the function that contains the call-site.

! The callee is the function being called that might be inlined.

Minimum call-site criteria:

! The number of actual arguments must match the number of formal arguments of the callee.

! The number of return values must be the same as the callees' number.

! The data types of the actual and formal arguments must be compatible.

! No multi-lingual inlining is allowed. Caller and callee must be written in the same source
language.

Minimum criteria for the caller:

! At most, 2000 intermediate statements will be inlined into the caller from all the call-sites being
inlined to the caller. You can change this value by specifying the option -Qoption,c,-
ip_ninl_max_total_stats=new value

! The function must be called or have its address used if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

! Routines that contain the following substrings in their names are not inlined: abort, alloca, denied,
err, exit, fail, fatal, fault, halt, init, interrupt, invalid, quit, rare, stop, timeout, trace, trap, and warn.
Once these criteria are met, the compiler picks the routines whose inline expansions provide the
greatest benefit to program performance. This is done using the following default heuristics.
When you use profile-guided optimizations, a number of other heuristics are used.

! The default heuristic focuses on call-sites in loops or calls to functions containing loops.

! When profile information is available, the focus changes to the most frequently executed call-
sites. Also, the default inline heuristic does not allow the inlining of functions with more than 230
intermediate statements, or the number specified by the option -Qoption,c,-
ip_ninl_max_stats.

! The default inline heuristic stops when it detects direct recursion.

! The default heuristic will always inline very small functions that meet the minimum inline criteria.
By default, functions are inlined. This limit can be modified with the option -Qoption,c,-
ip_ninl_min_stats. Default for Itanium(TM)-based applications: ip_ninl_min_stats =
15. Default for IA-32 applications: ip_ninl_min_stats = 7.

 83

Profile-guided Optimizations
Profile-guided Optimizations Overview
Profile-guided optimizations (PGO) tell the compiler which areas of an application are most frequently
executed. By knowing these areas, the compiler is able to be more selective in optimizing the application.
For example, the use of PGO often enables the compiler to make better decisions about function inlining,
thereby increasing the effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided optimization creates an instrumented program from your source code and special code
from the compiler. Each time this instrumented code is executed, the compiler generates a dynamic
information file. When you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to optimize the execution of
the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of IPO and PGO vary.
This is due to each program having a different profile and different opportunities for optimizations. The
guidelines provided here help you determine if you can benefit by using IPO and PGO.

Added Performance with PGO

In this version of the Intel® C++ Compiler, PGO is improved in the following ways:

! Register allocation uses the profile information to optimize the location of spill code.

! For direct function calls, branch prediction is improved by identifying the most likely targets. With
the Pentium® 4 processor's longer pipeline, improved branch prediction translates to higher
performance gains.

! The compiler detects and does not vectorize loops that execute only a small number of iterations,
reducing the run time overhead that vectorization might otherwise add.

Profile-guided Optimizations Methodology
PGO works best for code with many frequently executed branches that are difficult to predict at compile
time. An example is code that is heavy with error-checking in which the error conditions are false most of
the time. The "cold" error-handling code can be placed such that the branch is rarely mispredicted.
Eliminating the interleaving of "hot" and "cold" code improves instruction cache behavior. For example,
the use of PGO often allows the compiler to make better decisions about function inlining, thereby
increasing the effectiveness of interprocedural optimizations.

 84

PGO Phases

The PGO methodology requires three phases:

1. instrumentation compilation and linking with -prof_gen[x]

2. instrumented execution by running the executable

3. feedback compilation with -prof_use

A key factor in deciding whether you want to use PGO lies in knowing which sections of your code are the
most heavily used. If the data set provided to your program is very consistent and it elicits a similar
behavior on every execution, then PGO can probably help optimize your program execution. However,
different data sets can elicit different algorithms to be called. This can cause the behavior of your program
to vary from one execution to the next.

In cases where your code behavior differs greatly between executions, PGO may not provide noticeable
benefits. You have to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles.

Basic PGO Options
Option Description

-prof_gen[x] Instructs the compiler to produce instrumented code in your object files in preparation for instrumented
execution. NOTE: The dynamic information files are produced in phase 2 when you run the instrumented
executable.

-prof_use Instructs the compiler to produce a profile-optimized executable and merges available dynamic
information (.dyn) files into a pgopti.dpi file. If you perform multiple executions of the
instrumented program, -prof_use merges the dynamic information files again and overwrites the
previous pgopti.dpi file.

Example of Profile-guided Optimization
The following is an example of the basic PGO phases:

Instrumentation Compilation and Linking

Use -prof_gen to produce an executable with instrumented information. Use also the -prof_dir option as
recommended for most programs, especially if the application includes the source files located in multiple
directories. -prof_dir ensures that the profile information is generated in one consistent place. For
example:

IA-32 Systems

prompt>icc -prof_gen -prof_dirc:\profdata -c a1.cpp a2.cpp a3.cpp
prompt>icc a1.o a2.o a3.o

Itanium(TM)-based Systems
prompt>ecc -prof_gen -prof_dirc:\profdata -c a1.cpp a2.cpp a3.cpp
prompt>ecc a1.o a2.o a3.o

In place of the second command, you could use the linker directly to produce the instrumented program.

 85

Instrumented Execution

Run your instrumented program with a representative set of data to create a dynamic information file.

prompt>a.out

The resulting dynamic information file has a unique name and .dyn suffix every time you run a.out. The
instrumented file helps predict how the program runs with a particular set of data. You can run the
program more than once with different input data.

Feedback Compilation

Compile and link the source files with -prof_use to use the dynamic information to optimize your
program according to its profile:

 IA-32 Systems

prompt>icc -prof_use -ipo a1.cpp a2.cpp a3.cpp

Itanium(TM)-based Systems

prompt>ecc -prof_use -ipo a1.cpp a2.cpp a3.cpp

Besides the optimization, the compiler produces a pgopti.dpi file. You typically specify the default
optimizations (-O2) for phase 1, and specify more advanced optimizations (-ip or -ipo) for phase 3.
This example used -O2 in phase 1 and -O2 -ip in phase 3.

Note

The compiler ignores the -ip or the -ipo options with -prof_gen[x].

PGO Environment Variables
The "Profile-Guided Optimization Environment Variables" table below describes environment values to
determine the directory in which to store dynamic information files or whether to overwrite pgopti.dpi.
Refer to your operating system documentation for instructions on how to specify environment values.

Profile-guided Optimization Environment Variables

Variable Description

PROF_DIR Specifies the directory in which dynamic information files are created. This variable applies to all
three phases of the profiling process.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By default, during the feedback compilation phase,
the compiler merges the data from all dynamic information files and creates a new pgopti.dpifile if
.dyn files are newer than an existing pgopti.dpifile. When this variable is set, the compiler does not
overwrite the existing pgopti.dpi file. Instead, the compiler issues a warning and you must remove
the pgopti.dpi file if you want to use additional dynamic information files.

 86

Function Order List
Function Order List Usage Guidelines
A function order list is a text file that specifies the order in which the linker should link the non-static
functions of your program. This improves the performance of your program by reducing paging and
improving code locality. Profile-guided optimizations support the generation of a function order list to be
used by the linker. The compiler determines the order using profile information.

To enable the Intel® C++ Compiler and proforder tool to generate a function order list, you must use
the -prof_gen[x] and -prof_dir options described in the table below.

Option Description

-prof_gen[x] Generates an instrumented object file and creates a static profile information file (.spi), which
contains source position information for the calls of each compiled function. This information,
combined with the dynamic profile information from the .dpi file, enables optimized ordering of
functions. When you use -prof_gen[x] instead of -prof_gen[x], you can use the
proforder tool to create a function order list for the linker. However, -prof_gen[x] also
requires more memory at runtime, produces larger .dyn files, and disables execution of parallel
make files.

-prof_dir dirname Specifies the directory where .dyn files are to be created. The default is the directory where the
program is compiled. The specified directory must already exist. You should specify the same -
prof_dir option for both the instrumentation and feedback compilations. If you move the
.dyn files, you need to specify the new path.

You will need to use the utilities profmerge and proforder described in Utilities for Profile-Guided
Optimization.

Use the following guidelines to create a function order list:

! The order list only affects the order of non-static functions.

! Do not use -prof_gen[x] to compile two files from the same program simultaneously. This
means that you cannot use the -prof_gen[x] option with parallel makefile utilities.

! You must compile to enable function-level linking. This option is active when you specify -O, -O1,
-O2, or -O3.

Function Order List Example

Assume you have a C program that consists of files file1.c and file2.c and that you have created a
directory for the profile data files in /home/usr/profdata. Do the following to generate and use a
function order list.

1. Compile your program by specifying -prof_gen[x] and -prof_dir: IA-32 Systems
prompt>icc -oMYPROG -prof_genx -prof_dir /home/usr/profdata file1.c
file2.c Itanium(TM)-based Systems prompt>ecc -oMYPROG -prof_genx -prof_dir
/home/usr/profdata file1.c file2.c

2. Run the instrumented program on one or more sets of input data prompt>./MYPROG

3. The program produces a .dyn file each time it is executed.

4. Merge the data from one or more runs of the instrumented program using the profmerge tool to
produce the pgopti.dpi file. prompt>profmerge -prof_dir /home/usr/profdata

 87

5. Generate the function order list using the proforder tool. By default, the function order list is
produced in the file proford.txt. prompt>proforder -prof_dir
/home/usr/profdata -o MYPROG.txt

6. Compile your application with profile feedback by specifying the -prof_use and the /ORDER
option to the linker. Again, use the -prof_dir option to specify the location of the profile files.
IA-32 Systems prompt>icc -oMYPROG -prof_use -prof_dir /home/usr/profdata
file1.c file2.c -link /ORDER:@MYPROG.txt Itanium(TM)-based Systems
prompt>ecc -oMYPROG -prof_use -prof_dir /home/usr/profdata file1.c
file2.c -link /ORDER:@MYPROG.txt

Comparison of Function Order Lists and IPO Code Layout

The Intel C++ Compiler provides two methods of optimizing the layout of functions in the executable:

1. use of a function order list

2. use of -ipo

Each method has its advantages. A function order list, created with proforder, enables you to optimize
the layout of non-static functions; that is, external and library functions whose names are exposed to the
linker. The linker cannot directly affect the layout order for static functions because the names of these
functions are not available in the object files.

On the other hand, using -ipo allows you to optimize the layout of all static or extern functions compiled
with the Intel C++ Compiler. The compiler cannot affect the layout order for functions it does not compile,
such as library functions. The function layout optimization is performed automatically when IPO is active.

Function Order List Effects

Function Type Code Layout with -ipo Function Ordering with proforder

Static X No effect.

Extern X X

Library No effect. X

Function Call to Dump Profile Data Explicitly

As part of the instrumented execution phase of profile-guided optimization, the instrumented program
writes profile data to the dynamic information file (.dyn file). The file is written after the instrumented
program returns normally from main() or calls the standard C exit function. For programs that do not
terminate normally, the _PGOPTI_Prof_Dump function is provided. During the instrumentation
compilation (-prof_gen), you can add a call to this function to your program. You should add the
following function prototype prior to the call:

void _cdec _PGOPTI_Prof_Dump(void);

Note

You must remove the call or comment it out prior to the feedback compilation with -prof_use.

 88

Utilities for Profile-guided Optimization
The profmerge and proforder tools are used when generating a function order list.

The profmerge Tool
Use profmerge to merge dynamic profile information (.dyn) files. The compiler executes this tool
automatically during the feedback compilation phase when you specify -prof_use. You can also invoke
it as follows:

! IA-32 Systems: prompt>profmerge [-prof_dir dir_name]

! Itanium(TM)-based Systems: prompt>profmerge -em -p64 [-prof_dir dir_name]

This merges all .dyn files in the current directory or the directory specified by -prof_dir, and produces
the summary file pgopti.dpi.

The proforder Tool
Use proforder to generate a function order list for use with the /ORDER linker option. The syntax for
this tool is as follows:

prompt>proforder [-prof_dir dir_name] [-o order_file]

Argument Description

dir_name the directory containing the profile files (.dpi, .dyn, and .spi)

order_file the optional name of the function order list file. The default name is proford.txt.

The proforder utility is used as part of the feedback compilation phase to improve program
performance.

 89

PGO API: Profile Information Generation Support
PGO API Support Overview
Profile Information Generation Support lets you control of the generation of profile information during the
instrumented execution phase of profile-guided optimizations. Normally, profile information is generated
by an instrumented application when it terminates by calling the standard exit() function. The functions
described in this section may be necessary in assuring that profile information is generated in the
following situations:

! when the instrumented application exits using a non-standard exit routine

! when instrumented application is a non-terminating application where exit() is never called

! when you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #include <pgouser.h> at
the top of any source file where the functions may be used.

Dumping Profile Information
void _PGOPTI_Prof_Dump(void);

Description

This function dumps the profile information collected by the instrumented application. The profile
information is recorded in a .dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application. Normally,
_PGOPTI_Prof_Dump should be called just once. It is also possible to use this function in conjunction
with _PGOPTI_Prof_Reset() to generate multiple .dyn files (presumably from multiple sets of input
data).

Example

/* selectively collect profile information for the portion
of the application involved in processing input data

*/

input_data = get_input_data();

while (input_data) {
_PGOPTI_Prof_Reset();
process_data(input_data);
_PGOPTI_Prof_Dump();
input_data = get_input_data();
}

 90

Resetting the Dynamic Profile Counters
void _PGOPTI_Prof_Reset(void);

Description

This function resets the dynamic profile counters.

Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of the
instrumented application. See the example under PGOPTI_Prof_Dump().

Dumping and Resetting Profile Information
void _PGOPTI_Prof_Dump_And_Reset(void);

Description

This function may be called more than once. Each call will dump the profile information to a new .dyn
file. The dynamic profile counters are then reset, and execution of the instrumented application
continues.

Recommended Usage

Periodic calls to this function allows a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided optimization. The
direct use of this function allows your application to control precisely when the profile information is
generated.

Interval Profile Dumping
void _PGOPTI_Set_Interval_Prof_Dump(int interval);

Description

This function activates Interval Profile Dumping and sets the approximate frequency at which dumps will
occur. The interval parameter is measured in milliseconds and specifies the time interval at which
profile dumping will occur. For example, if interval is set to 5000, then a profile dump and reset will
occur approximately every 5 seconds. The interval is approximate because the time check controlling the
dump and reset is only performed upon entry to any instrumented function in your application.

Note

! Setting interval to zero or a negative number will disable interval profile dumping.

! Setting interval to a very small value may cause the instrumented application to spend nearly
all of its time dumping profile information. Be sure to set interval to a large enough value so
that the application can perform actual work and collect substantial profile information.

 91

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping. Note that
an alternative method of initiating Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_INTERVAL, to the desired interval value prior to starting the application. The intention of
Interval Profile Dumping is to allow a non-terminating application to be profiled with minimal changes to
the application source code.

Environment Variable
PROF_DUMP_INTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented application.
See the Recommended Usage of _PGOPTI_Set_Interval_Prof_Dump for more information.

 92

High-level Language Optimizations
(HLO)
HLO Overview
High-level optimizations (HLO) exploit the properties of source code constructs, such as loops and arrays,
in the applications developed in high-level programming languages, such as Fortran and C++. They
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam, blocking, data
prefetch, scalar replacement, data layout optimizations and some others. The option that turns on the
high-level optimizations is -O3.

IA-32 and Itanium(TM)-based applications

-O3 Enable -O2 option plus more aggressive optimizations, for example, loop transformation and prefetching. -O3
optimizes for maximum speed, but may not improve performance for some programs.

IA-32 applications

-O3 In addition, in conjunction with the vectorization options, -ax{M|K|W} and -x{M|K|W}, -O3 causes the
compiler to perform more aggressive data dependency analysis than for -O2. This may result in longer
compilation times.

Loop Transformations
All these transformations are supported by data dependence. These techniques also include induction
variable elimination, constant propagation, copy propagation, forward substitution, and dead code
elimination. The loop transformation techniques include:

! loop normalization

! loop reversal

! loop interchange and permutation

! loop skewing

! loop distribution

! loop fusion

! scalar replacement

In addition to the loop transformations listed for both IA-32 and Itanium(TM) architectures above, the
Itanium(TM) architecture allows collapsing techniques.

 93

Loop Unrolling
You can unroll loops and specify the maximum number of times you want the compiler to do so.

How to Enable Loop Unrolling

You use the -unroll[n] option to unroll loops. n determines the maximum number of times for the
unrolling operation. This applies only to loops that the compiler determines should be unrolled. Omit n to
let the compiler decide whether to perform unrolling or not.

The following example unrolls a loop at most four times:

IA-32 Systems: prompt>icc -unroll4 a.cpp

How to Disable Loop Unrolling

Disable loop unrolling by setting n to 0.

The following example disables loop unrolling:

IA-32 Systems: prompt>icc -unroll0 a.cpp

Absence of Loop-carried Memory Dependency with
IVDEP Directive
For Itanium(TM)-based applications, the -ivdep_parallel option indicates there is absolutely no loop-
carried memory dependency in the loop where IVDEP directive is specified. This technique is useful for
some sparse matrix applications. For example, the following loop requires -ivdep_parallel in
addition to the directive IVDEP to indicate there is no loop-carried dependencies.

#pragma ivdep

for (i=1; i<n; i++) {

e[ix[2][i]] = e[ix[2][i]]+1.0;

e[ix[3][i]] = e[ix[3][i]]+2.0;

}

The following example shows that using this option and the IVDEP directive ensures there is no loop-
carried dependency for the store into a(). /a[] for C/

#pragma ivdep

for (j=0; j<n; j++) {

a[b[j]] = a[b[j]] + 1;

}

 94

Parallelization
Parallelization Options Overview
For shared memory parallel programming, the Intel® C++ Compiler supports the OpenMP, version 1.0
API. The Parallelization capability of the Intel C++ Compiler uses the following options.

Option Description

-parallel Enables the auto-parallelizer to generate multi-threaded code for loops that can be
safely executed in parallel. Default: OFF

-par_threshold{n} Sets a threshold for the auto-parallelization of loops based on the probability of
profitable execution of the loop in parallel, n=0 to 100. Default: OFF

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic levels.
 Default: -par_report1.

-openmp Enables the parallelizer to generate multi-threaded code based on the OpenMP
directives. Default: OFF

-openmp_report{0|1|2} Controls the OpenMP parallelizer's diagnostic levels. Default: -
openmp_report1

Auto Parallelization
In addition to the low-level "hand-thread" approach based on threading API for Win32* and Itanium™-
based Windows* 2000, the Intel® C++ Compiler with the auto-parallelization feature and a high-level
symmetric multi-rpocessing (SMP) programming model enable the user with an easy way to exploit the
parallelism on SMP systems.

Enabling Auto-parallelizer

To enable auto-parallelizer, use the -parallel option. The -parallel option detects parallel loops
capable of being executed safely in parallel and automatically generates multithreaded code for these
loops. Automatic parallelization relieves the user from having to deal with the low-level details of iteration
partitioning, data sharing, thread scheduling and synchronizations. It also provides the benefit of the
performance available from multiprocessor systems.

Guidelines for Effective Auto-parallelization Usage

Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

! Expose the trip count of loops whenever possible; specifically use constants where the trip count
is known and save loop parameters in local variables.

! Avoid placing structures inside loop bodies that the compiler may assume to carry dependent
data, for example, procedure calls or global references.

 95

Auto-parallelization Environment Variables

Option Description Default

OMP_NUM_THREADS Controls the number of threads used. Number of processors currently installed in the system.

OMP_SCHEDULE Specifies the type of run time scheduling. STATIC

Auto-parallelizer's Diagnostic
The -par_report{0|1|2|3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

! -par_report0 = no diagnostic information is displayed.

! -par_report1 = indicates loops successfully auto-parallelized (default).

! -par_report2 = loops successfully and unsccessfully auto-parallelized.

! -par_report3 = same as 2 plus additional information about any proven or assumed
dependences inhibiting auto-parallelization.

Threshold for Auto-parallelization
The -Qpar_threshold{n} option sets a threshold for the auto-parallelization of loops based on the
probability of profitable execution of the loop in parallel, n=0 to 100. Default is n=75. This option is used
for loops whose computation work volume cannot be determined at compile-time.

! -Qpar_threshold0 - loops get auto-parallelized regardless of computation work volume.

! -Qpar_threshold100 - loops get auto-parallelized only if profitable parallel execution is almost
certain.

The intermediate 1 to 99 values represent the percentage probability for profitable speedup. For example,
n=50 would mean parallelize only if there is a 50% probability of the code speeding up if executed in
parallel. The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Parallelization with OpenMP*
The OpenMP* C/C++ API has recently emerged as the de facto standard for shared memory, parallel
programming. It shelters you from having to deal with the low-level details of iteration partitioning, data
sharing, thread scheduling, and synchronization. The Intel® C++ Compiler supports the OpenMP* API
version 1.0 and performs code transformation to generate multithreaded code automatically as
determined by your OpenMP* directive annotations to the program.

Note

As with many advanced features of compilers, you must be sure to properly understand the functionality
of the auto-parallelization switches in order to use them effectively and avoid unwanted program
behavior.

 96

OpenMP* Parallelization Reference

Option Description

-openmp Enables the parallelizer to generate multi-threaded code based on the OpenMP* directives.
The code can be executed in parallel on both uniprocessor and multiprocessor systems.
The -openmp option only works at an optimization level of -O2 (the default) or higher.

-openmp_report{0|1|2} Controls the output of diagnostic messages. The level of the message output is controlled
by 0, 1, or 2.

! 0 = no diagnostic information is displayed.

! 1 = display diagnostics indicating loops, regions, and sections successfully
parallelized (default).

! 2 = same as 1 plus diagnostics indicating master construct, single construct,
critical sections, order construct, atomic directive, etc. successfully handled.

OpenMP* Standard Options
For complete information on the OpenMP* standard, visit the http://www.openmp.org Web site. The Intel
Extensions to OpenMP* topic describes the extensions to the standard that have been added by Intel in
the Intel® C++ Compiler.

OpenMP* C/C++ Directives

An OpenMP* directive has the form:

#pragma omp directive [directive clause . . .]

The following tables list and describe OpenMP* directives and clauses.

Directive Description

Parallel Defines a parallel region.

For Identifies an iterative work-sharing construct that specifies a region in which the iterations of the
associated loop should be executed in parallel.

sections Identifies a non-iterative work-sharing constuct that specifies a set of constucts that are to be
divided among threads in a team.

section Indicates that the associated code block should be executed in parallel.

single Identifies a construct that specifies that the associated structured block is executed by only one
thread in the team.

parallel for A shortcut for a parallel region that contains a single for directive.

parallel sections Provides a shortcut form for specifying a parallel region containing a single sections directive.

master Identifies a constuct that specifies a structured block that is executed by the master thread of the
team.

critical Identifies a construct that restricts execution of the associated structured block to a single thread
at a time.

 97

Directive Description

barrier Synchronizes all the threads in a team.

atomic Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the implementation is required to ensure that
all the threads in a team have a consistent view of certain objects in memory.

threadprivate Makes the named file-scope or namespace-scope variables specified private to a thread but file-
scope visible within the thread.

ordered The structured block following an ordered directive

Clauses Description

private Declares variables to be private to each thread in a team.

firstprivate A private copy of the private variable is created for each thread. In addition, each new private
object is initialized with the value of the original object.

lastprivate A private copy of the private variable is created for each thread. In addition, the last iteration's
value of each lastprivate is assigned to the original object.

shared Shares variables among all the threads in a team.

default Allows you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

nowait Specifies that threads that finish the loop early may continue executing code after the loop without
waiting for the remaining threads to finish.

if If if(scalar_logical_expression) clause is present, the enclosed code block is
executed in parallel only if the scalar_logical_expression is true. Otherwise, the
code block is serialized.

ordered Must be present when ordered directives are contained in the dynamic extent of the for construct.

schedule Specifies how iterations of the loop are divided among the threads of the team.

copyin Provides a mechanism to assign the same name to threadprivate variables for each
thread in the team executing the parallel region.

OpenMP* Environment Variables

Variable Description Default

OMP_SCHEDULE Sets the run-time schedule type and chunk size. STATIC

OMP_NUM_THREADS Sets the number of threads to use during execution. Number of processors

OMP_DYNAMIC Enables or disables the dynamic adjustment of the number of
threads.

FALSE

OMP_NESTED Enables or disables nested parallelism. FALSE

 98

OpenMP* Run Time Library Routines
OpenMP* provides several run time library routines to assist you in managing your program in parallel
mode. Many of these run time library routines have corresponding environment variables that can be set
as defaults. The run time library routines allow you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run time library routine overrides any corresponding
environment variable.

The following table specifies the interface to these routines. The names for the routines are in user
namespace. omp.h is provided in the include directory of your compiler installation. There are definitions
for two different locks, omp_lock_t and omp_nest_lock_t, which are used by the functions in the
table.

Function Description

void omp_set_num_threads(int num_threads) Dynamically set the number of threads to
use for this region.

int omp_get_num_threads(void) Determine what the current number of
threads is that is allowed to execute a
region.

int omp_get_max_threads(void) Obtains the maximum number of threads
ever allowed with this OpenMP*
implementation.

int omp_get_thread_num(void) Determines the unique thread number of the
thread currently executing this section of
code.

int omp_get_num_procs(void) Determines the number of processors on the
current machine.

int omp_in_parallel(void) Returns non-zero if it is called within the
dynamic extent of a parallel region executing
in parallel, otherwise it returns zero.

void omp_set_dynamic(int dynamic_threads) Enable or disable dynamic adjustment of the
number of threads used to execute a parallel
region. If dynamic_threads is non-
zero, dynamic threads are enabled. If
dynamic_threads is zero, dynamic
threads are disabled.

int omp_get_dynamic(void) Returns non-zero if dynamic thread
adjustment is enabled and returns zero
otherwise.

void omp_set_nested(int nested) Enable or disable nested parallelism. If
parameter is non-zero, enable. Default is
disabled.

int omp_get_nested(void) Always returns zero in the current version of
compiler.

void omp_init_lock(omp_lock_t *lock) Initialize a unique lock and set lock to point
to it.

void omp_destroy_lock(omp_lock_t *lock) Disassociate lock from any locks.

 99

Function Description

void omp_set_lock(omp_lock_t *lock) Force the executing thread to wait until the
lock associated with lock is available. The
thread is granted ownership of the lock when
it becomes available.

void omp_unset_lock(omp_lock_t *lock) Release executing thread from ownership of
lock associated with lock. lock must be
initialized via omp_init_lock(), and
behavior undefined if executing thread does
not own the lock associated with lock.

int omp_test_lock(omp_lock_t *lock); Attempt to set lock associated with lock. If
successful, return non-zero. lock must be
initialized via omp_init_lock().

void omp_init_nest_lock(omp_nest_lock_t *lock) Initialize a unique nested lock and set lock to
point to it.

void omp_destroy_nest_lock(omp_nest_lock_t *lock) Disassociate the nested lock lock from any
locks.

void omp_set_nest_lock(omp_nest_lock_t *lock) Force the executing thread to wait until the
lock associated with lock is available. The
thread is granted ownership of the lock when
it becomes available

void omp_unset_nest_lock(omp_nest_lock_t *lock) Release executing thread from ownership of
lock associated with lock if count is zero.
lock must be initialized via
omp_init_nest_lock(). Behavior
is undefined if executing thread does not
own the lock associated with lock.

int omp_test_nest_lock(omp_nest_lock_t *lock) Attempt to set lock associated with lock. If
successful, return nesting count, otherwise
return zero. lock must be initialized via
omp_init_lock().

Intel Extensions to OpenMP*
For complete information on the OpenMP* standard, visit the Web site http://www.openmp.org. This topic
describes the extensions to the standard that have been added by Intel in the Intel® C++ Compiler.

Environment Variables

Environment Variable Description

KMP_STACKSIZE Used to set the number of bytes that will be allocated for each parallel thread to use as its private
stack.

KMP_BLOCKTIME Used to set the integer value of time, in milliseconds, that the libraries wait after completing the
execution of a parallel region before putting threads to sleep.

KMP_SPIN_COUNT Used to help fine-tune the critical section.

 100

Thread-level malloc()

The Intel C++ Compiler implements an extension to the OpenMP* run-time library to allow threads to
allocate memory from a heap local to each thread.

The memory allocated by these routines must also be freed by these routines. While it is legal for the
memory to be allocated by one thread and freed by a different thread, this mode of operation has a slight
performance penalty.

The interface is identical to the malloc() interface except the entry points are prefixed with kmp_, as
shown below:

#include omp.h
void * kmp_malloc(size_t);
void * kmp_calloc(size_t, size_t);
void * kmp_realloc(void *, size_t);
void kmp_free(void *);

 101

Vectorization (IA-32 only)
Vectorization Overview
The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD instructions in
the MMX(TM), SSE, and SSE2 instruction sets. The vectorizer detects operations in the program that can
be done in parallel, and then converts the sequential program to process 2, 4, 8, or 16 elements in one
operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel® C++ Compiler
vectorization on IA-32 systems only. The following list summarizes this section's contents.

! A quick reference of vectorization functionality and features

! Descriptions of compiler switches to control vectorization

! Descriptions of the C++ language features to control vectorization

! Discussion and general guidelines on vectorization levels:

! Automatic vectorization

! Vectorization with user intervention

! Examples demonstrating typical vectorization issues and resolutions

Vectorization Key Programming Guidelines
The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and check
them against your code to eliminate ambiguities that prevent the compiler from achieving optimal
vectorization.

Guidelines for loop bodies:

! Use straight-line code (a single basic block)

! Use vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

! Use only assignment statements

Avoid the following in loop bodies:

! Function calls

! Unvectorizable operations

! Mixing vectorizable types in the same loop

! Data-dependent loop exit conditions

 102

Preparing Your Code for Vectorization

To make your code vectorizable, you will often need to make some changes to your loops. However, you
should make only the changes needed to enable vectorization and no others. In particular, you should
avoid these common changes:

! Do not unroll your loops, the compiler does this automatically.

! Do not decompose one loop with several statements in the body into several single-statement
loops.

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the case of
Streaming SIMD Extensions, the vector memory operations are limited to stride-1 accesses with a
preference to 16-byte-aligned memory references. This means that if the compiler abstractly recognizes a
loop as vectorizable, it still might not vectorize it for a distinct target architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common problem
with global pointers is that they often prevent the compiler from being able to prove two memory
references at distinct locations. Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, and memory operations
within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic messages, you
can modify your program to overcome the known limitations and enable effective vectorizations. The
following topics summarize the capabilities and restrictions of the vectorizer with respect to loop
structures.

Data Dependence
Data dependence relations represent the required ordering constraints on the operations in serial loops.
Because vectorization rearranges the order in which operations are executed, any auto-vectorizer must
have at its disposal some form of data dependence analysis. The "Data-dependent Loop" example shows
some code that exhibits data dependence. The value of each element of an array is dependent on itself
and its two neighbors.

Data-dependent Loop

float data[N];

int i;

for (i=1; i<N-1; i++)

{

data[i] = data[i-1]*0.25 + data[i]*0.5 + data[i + 1]*0.25

}

The loop in the example above is not vectorizable because the write to the current element data[i] is
dependent on the use of the preceding element data[i-1], which has already been written to and
changed in the previous iteration. To see this, look at the access patterns of the array for the first two
iterations as shown in the following example:

 103

Data Dependence Vectorization Patterns

i=1: READ data[0]
READ data[1]
READ data[2]
WRITE data[1]

i=2: READ data[1]
READ data[2]
READ data[3]
RITE data[2]

In the normal sequential version of the loop shown, the value of data[1] read from during the second
iteration was written to in the first iteration. For vectorization, the iterations must be done in parallel,
without changing the semantics of the original loop.

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may
overlap. Given two references in a program, the conditions are defined by:

! whether the referenced variables may be aliases for the same (or overlapping) regions in
memory,

! for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series of
tests that progressively increase in power as well as time and space costs. First, a number of simple tests
are performed in a dimension-by-dimension manner, since independence in any dimension will exclude
any dependence relationship. Multi-dimensional arrays references that may cross their declared
dimension boundaries can be converted to their linearized form before the tests are applied. Some of the
simple tests used are the fast GCD test, proving independence if the greatest common divisor of the
coefficients of loop indices cannot evenly divide the constant term, and the extended bounds test, which
tests potential overlap for the extreme values of subscript expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful hierarchical
dependence solver that uses Fourier-Motzkin elimination to solve the data dependence problem in all
dimensions.

Loop Constructs
Loops can be formed with the usual for and while-do, or repeat-until constructs or by using a
goto and a label. However, the loops must have a single entry and a single exit to be vectorized.

 104

Correct Usage

while (i < n)

{

/* if branch inside body of loop */

a[i] = b[i] * c[i];

if (a[i] < 0.0)

{

a[i] = 0.0;

}

i++;

}

Incorrect Usage

while (i < n)

{

if (condition) break;

/* 2nd exit */

++i;

}

Loop Exit Conditions
Loop exit conditions determine the number of iterations that a loop executes. For example, fixed indexes
for loops determine the iterations. The loop iterations must be countable; that is, the number of iterations
must be expressed as one of the following:

! a constant

! a loop invariant term

! a linear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show countable and non-
countable loop constructs.

 105

Correct Usage for Countable Loop:
count = N; /* exit condition specified by "N - 1b + 1" */

...

while (count != 1b)

{

/* 1b is not affected within loop */

a[i] = b[i] * x;
b[i] = c[i] + sqrt(d[i]);
--count;

}

Correct Usage for Countable Loop:
/* exit condition is "(n-m+2)/2" */

i = 0;

for (l=m; l<n; l+=2)

{

a[i] = b[i] * x;
b[i] = c[i] + sqrt(d[i]);
++i;

}

Incorrect Usage for Non-Countable Loop:
i = 0;

/* iterations dependent on a[i] */

while (a[i] > 0.0)

{

a[i] = b[i] * c[i];
++i;

}

Types of Loops Vectorized
For integer loops, MMX(TM) technology and Streaming SIMD Extensions provide SIMD instructions for
most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved. A 32-bit shift-right
operator, for instance, is not vectorized if the final stored value is a 16-bit integer. Also, note that because
the MMX(TM) instructions and Streaming SIMD Extensions instruction sets are not fully orthogonal (byte
shifts, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, the
Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators +, -, *, and /. Also,

 106

the Streaming SIMD Extensions provide SIMD instructions for the binary MIN, MAX, and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric functions SIN,
COS, TAN) are supported in software in a vector mathematical run-time library that is provided with the
Intel® C++ Compiler..

Stripmining and Cleanup
The compiler automatically stripmines your loop and generates a cleanup loop. This means you do not
need to unroll your loops, and, in most cases, this will also enable more vectorization.

Before Vectorization

i = 0;

while (i < n)

{

/* original loop code */

a[i] = b[i] + c[i];
++i;

}

After Vectorization

/* the vectorizer generates the following two loops */

i = 0;

while (i < (n - n%4))

{

/* vector strip-mined loop */
/* subscript [i:i+3] denotes SIMD execution */

a[i:i+3] = b[i:i+3] + c[i:i+3];
i = i + 4;

}

while (i < n)

{

/* scalar clean-up loop */

a[i] = b[i] + c[i];

}

 107

Statements in the Loop Body
The vectorizable operations are different for floating-point and integer data.

Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root, max,
and min. Operation on double precision types is not permitted unless optimizing for a Pentium(R) 4
processor system, using the -xW or -axW compiler option.

Integer Array Operations

The statements within the loop body may contain char, unsigned char, short, unsigned short,
int, and unsigned int. Calls to functions such as sqrt and fabs are also supported. Arithmetic
operations are limited to addition, subtraction, bitwise AND, OR, and XOR operators, division (16-bit only),
multiplication (16-bit only), min, and max. You can mix data types only if the conversion can be done
without a loss of precision. Some example operators where you can mix data types are multiplication,
shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are allowed. In particular,
note that the special __m64 and __m128 datatypes are not vectorizable. The loop body cannot contain
any function calls. Use of the Streaming SIMD Extensions intrinsics (_mm_add_ps) are not allowed.

Language Support and Directives
This topic addresses language features that better help to vectorize code. The declspec(align(n))
declaration enables you to overcome hardware alignment constraints. The restrict qualifier and the
pragmas address the stylistic issues due to lexical scope, data dependence, and ambiguity resolution.

Language Support

Option Description

__declspec(align(n)) Directs the compiler to align the variable to an n-byte boundary. Address
of the variable is address mod n=0.

__declspec(align(n,off)) Directs the compiler to align the variable to an n-byte boundary with
offset off within each n-byte boundary. Address of the variable is
address mod n = off.

restrict Permits the disambiguator flexibility in alias assumptions, which enables
more vectorization.

__assume_aligned(a,n) Instructs the compiler to assume that array a is aligned on an n-byte
boundary; used in cases where the compiler has failed to obtain
alignment information.

#pragma ivdep Instructs the compiler to ignore assumed vector dependencies.

#pragma vector
{aligned | unaligned | always}

Specifies how to vectorize the loop and indicates that efficiency
heuristics should be ignored.

#pragma novector Specifies that the loop should never be vectorized

 108

Multi-version Code

Multi-version code is generated by the compiler in cases where data dependence analysis fails to prove
independence for a loop due to the occurrence of pointers with unknown values. This functionality is
referred to as dynamic dependence testing.

Pragma Scope

These pragmas control the vectorization of only the subsequent loop in the program, but the compiler
does not apply them to any nested loops. Each nested loop needs its own pragma preceding it in order
for the pragma to be applied. You must place a pragma only before the loop control statement.

Name: #pragma vector always

Syntax: #pragma vector always

Definition: This pragma instructs the compiler to override any efficiency heuristic during the decision to
vectorize or not. #pragma vector always will vectorize non-unit strides or very unaligned memory
accesses.

Example:

for(i = 0; i <= N; i++)

{

a[32*i] = b[99*i];

}

Name: #pragma ivdep

Syntax: #pragma ivdep

Definition: This pragma instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This pragma overrides that decision. Only use this when you know that the assumed loop
dependences are safe to ignore.

The loop in this example will not vectorize with the ivdep pragma, since the value of k is not known
(vectorization would be illegal if k<0).

Example:
#pragma ivdep

for (i = 0; i < m; i++)

{

a[i] = a[i + k] * c;

}

 109

Name: #pragma vector

Syntax: #pragma vector{aligned | unaligned}

Definition: The vector loop pragma means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the aligned (or unaligned) qualifier is used with
this pragma, the loop should be vectorized using aligned (or unaligned) operations. Specify one and
only one of aligned or unaligned.

Caution

If you specify aligned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code.

The loop in the example below uses the aligned qualifier to request that the loop be vectorized with
aligned instructions, as the arrays are declared in such a way that the compiler could not normally prove
this would be safe to do so.

Example:
void foo (float *a)

{

#pragma vector aligned

for (i = 0; i < m; i++)

{

a[i] = a[i] * c;

}

}

The compiler has at its disposal several alignment strategies in case the alignment of data structures is
not known at compile-time. A simple example is shown below (but several other strategies are supported
as well). If, in the loop shown below, the alignment of a is unknown, the compiler will generate a prelude
loop that iterates until the array reference that occurs the most hits an aligned address. This makes the
alignment properties of a known, and the vector loop is optimized accordingly.

 110

Alignment Strategies Example

float *a;

/* alignment unknown */

for (i = 0; i < 100; i++)

{

a[i] = a[i] + 1.0f;

}

/* dynamic loop peeling */

p = a & 0x0f;

if (p != 0)

{

p = (16 - p) / 4;

for (i = 0; i < p; i++)

{

a[i] = a[i] + 1.0f;

}

}

/* loop with a aligned (will be vectorized accordingly) */

for (i = p; i < 100; i++)

{

a[i] = a[i] + 1.0f;

}

 111

Name: #pragma novector

Syntax: #pragma novector

Definition: The novector loop pragma specifies that the loop should never be vectorized, even if it is
legal to do so.

In this example, suppose you know the trip count (ub - lb) is too low to make vectorization worthwhile.
You can use #pragma novector to tell the compiler not to vectorize, even if the loop is considered
vectorizable.

Example: #pragma novector

void foo (int lb, int ub)

{

#pragma novector

for (j = lb; j < ub; j++)

{

a[j] = a[j] + b[j];

}

}

Dynamic Dependence Testing Example

float *p, *q;

for (i = L; I <= U; i++)

{

p[i] = q[i];

}

...

pL = p * 4*L;
pH = p + 4*U;
qL = q + 4*L;
qH = q + 4*U;

if (pH < qL || pL > qH)

{

/* loop without data dependence */

for (i = L; i <= U; i++)

{

p[i] = q[i];

} else {

 112

for (i = L; i <= U; i++)

{

p[i] = q[i];

}

}

Vectorization Examples
This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the example below, a vector copy operation, vectorizes because the compiler can prove
dest[i] and src[i] are distinct.

Vectorizable Copy Due to Unproven Distinction

void vec_copy(float *dest, float *src, int len)

{

int i;

for (i = 0; i < len; i++;)

{

dest[i] = src[i];

}

}

The restrict keyword in the example below indicates that the pointers refer to distinct objects. Therefore,
the compiler allows vectorization without generation of multi-version code.

Using restrict to Prove Vectorizable Distinction

void vec_copy(float *restrict dest, float *restrict src, int len)

{

int i;

for (i = 0; i < len; i++)

{

dest[i] = src[i];

}

}

 113

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each structure or
array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit (DCU)
split due to misaligned data. The code loads the misaligned data across a 16-byte boundary, which
results in an additional memory access causing a six- to twelve-cycle stall. You can avoid the stalls if you
know that the data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary

For example, if you know that elements a[0] and b[0] are aligned on a 16-byte boundary, then the
following loop can be vectorized with the alignment option on (#pragma vector aligned):

Alignment of Pointers is Known

float *a, *b;
int i;

for (int i = 0; i < 10; i++)

{

a[i] = b[i];

}

After vectorization, the loop is executed as shown here:

Vector and Scalar Clean-up Iterations

Both the vector iterations a[0:3] = b[0:3]; and a[4:7] = b[4:7]; can be implemented with aligned
moves if both the elements a[0] and b[0] (or, likewise, a[4] and b[4]) are 16-byte aligned.

Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate unexpected
behavior. Specifically, using aligned moves on unaligned data, will result in an illegal instruction
exception.

 114

Data Alignment Examples

The example below contains a loop that vectorizes but only with unaligned memory instructions. The
compiler can align the local arrays, but because lb is not known at compile-time. The correct alignment
cannot be determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time

void f(int lb)

{

float z2[N], a2[N], y2[N], x2;

for (i = lb; i < N; i++)

{

a2[i] = a2[i] * x2 + y2[i];

}

}

If you know that lb is a multiple of 4, you can align the loop with #pragma vector aligned as shown
in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4

void f(int lb)

{

float z2[N], a2[N], y2[N], x2;

assert(lb%4==0);

#pragma vector aligned

for (i = lb; i < N; i++)

{

a2[i] = a2[i] * x2 + y2[i];

}

}

The use of assert checks that lb is a multiple of 4.

 115

Loop Interchange and Subscripts: Matrix Multiply
Matrix multiplication is commonly written as shown in the example below:

Typical Matrix Multiplication

for (i = 0; i < N; i++)

{

for (j = 0; j < n; j++)

{

for (k = 0; k < n; k++)

{

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

}

}

The use of b[k][j], is not a stride-1 reference and therefore will not normally be vectorizable. If the
loops are interchanged, however, all the references will become stride-1 as shown in the "Matrix
Multiplication With Stride-1" example.

Caution

Interchanging is not always possible because of dependencies, which can lead to different results.

Matrix Multiplication With Stride-1

for (i = 0; i < N; i++)

{

for (k = 0; k < n; k++)

{

for (j = 0; j < n; j++)

{

c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

}

}

 116

Libraries

Libraries Overview
The Intel® C++ Compiler uses the GNU* C Library and Dinkumware* C++ Library. These libraries are
documented at the following Internet locations:

GNU C Library

http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_toc.html

Dinkumware C++ Library

http://www.dinkumware.com/htm_cpl/lib_cpp.html

Default Libraries
The compiler allows you to use all the standard run-time libraries. By default, the compiler automatically
expands a number of standard C, C++, and math library functions. For more information, see Inline
Expansion of Library Functions.

The following libraries are supplied.

Library Description

libc.a GNU* C library (included with Red Hat* Linux*)

libguide.a for OpenMP* implementation

libsvml.a short vector math library

libirc.a Intel support library for PGO and CPU dispatch

libimf.a Intel math library

libcprts.a Dinkumware C++ Library

libunwind.a Unwinder library

libcxa.a Intel support library for EH and RTTI

If you want to link your program with alternate or additional libraries, specify them at the end of the
command line. For example, to compile and link hello.cpp with mylib.a, use the following command:

! IA-32 Systems: prompt>icc -ohello hello.cpp mylib.a

! Itanium(TM)-based Systems: prompt>ecc -ohello hello.cpp mylib.a

The mylib.a library appears prior to the libimf.a library in the command line for the LINK linker.

 117

Caution

The Linux system libraries and the compiler libraries are not built with the -align option. Therefore, if
you compile with the -align option and make a call to a compiler distributed or system library, and have
long long, double, or long double in your interface, you will get the wrong answer due to the
difference in alignment. Any code built with -align cannot make calls to libraries that use these types in
their interfaces unless they are built with -align (in which case they will not work without -align).

Math Libraries

In the compiler package, you received the Intel math library, libimf.a, which contains optimized
versions of the math functions in the standard C run-time library. The functions in the library are optimized
for program execution speed on the Pentium® processor.

To enable the optimized math library, the installation creates a directory for libimf.a and adds the new
directory path to the LD_LIBRARY_PATH variable. Intel recommends you keep libimf.a in the first
directory specified in the path.

Intel® Shared Libraries
The Intel® C++ Compiler (both IA-32 and Itanium(TM) compilers) links the libraries statically at link time
and dynamically at run time, the latter as dynamically-shared objects (DSO).

By default, the libraries are linked as follows:

! C++, math, and libcprts.a libraries are linked at link time, that is, statically.

! libcxa.so is linked dynamically to conform to C++ ABI.

! GNU* and Linux* system libraries are linked dynamically.

Advantages of This Approach

This approach

! Enables to maintain the same model for both IA-32 and Itanium compilers.

! Provides a model consistent with the Linux model where system libraries are dynamic and
application libraries are static.

! The users have the option of using dynamic versions of our libraries to reduce the size of their
binaries if desired.

! The users are licensed to distribute Intel-provided libraries.

The libraries libcprts.a and libcxa.so are C++ language support libraries used by Fortran when
Fortran includes code written in C++.

 118

Shared Library Options

The main options used with shared libraries are -i_dynamic and -shared.

The -i_dynamic option can be used to specify that all Intel-provided libraries should be linked
dynamically. The comparison of the following commands illustrates the effects of this option.

1. prompt>icc myprog.cpp

This command produces the following results (default):

! C++, math, libirc.a, and libcprts.a libraries are linked statically (at link time).

! Dynamic version of libcxa.so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to be installed on
the systems where the application runs.

2. prompt>icc -i_dynamic myprog.cpp

This command links all of the above libraries dynamically. This has the advantage of reducing the size of
the application binary, but it requires all the dynamic versions installed on the systems where the
application runs.

The -shared option instructs the compiler to build a Dynamic Shared Object (DSO) instead of an
executable. For more details, refer to the ld man page documentation.

Managing Libraries
The LD_LIBRARY_PATH environment variable contains a semicolon-separated list of directories in which
the linker will search for library (.a) files. If you want the linker to search additional libraries, you can add
their names to the command line, to a response file, or to the configuration file. In each case, the names
of these libraries are passed to the linker before the names of the Intel libraries that the driver always
specifies. For more information on adding library names to the response file and the configuration file, see
Response Files and Configuration Files.

To specify a library name on the command line, you must first add the library's path to the LIB
environment variable. Then, to compile file.cpp and link it with the library mylib.a, enter the following
command:

! IA-32 Systems: prompt>icc file.cpp mylib.a

! Itanium(TM)-based Systems: prompt>ecc file.cpp mylib.a

The compiler passes file names to the linker in the following order:

1. the object file

2. any objects or libraries specified on the command line, in a response file, or in a configuration file

3. the libimf.a library

 119

Diagnostics and Messages

Diagnostic Overview
This section describes the various messages that the compiler produces. These messages include the
sign-on message and diagnostic messages for remarks, warnings, or errors. The compiler always
displays any diagnostic message, along with the erroneous source line, on the standard output.

This section also describes how to control the severity of diagnostic messages.

Language Diagnostics
These messages describe diagnostics that are reported during the processing of the source file. These
diagnostics have the following format:

filename (linenum): type [#nn]: message

filename Indicates the name of the source file currently being processed.

linenum Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or catastrophes are not assigned a
number.

message Describes the diagnostic.

The following is an example of a warning message:

tantst.cpp(3): warning #328: Local variable "increment" never used.

The compiler can also display internal error messages on the standard error. If your compilation produces
any internal errors, contact your Intel representative. Internal error messages are in the following form:

FATAL COMPILER ERROR: message

Suppressing Warning Messages with lint Comments
The UNIX lint program attempts to detect features of a C or C++ program that are likely to be bugs,
non-portable, or wasteful. The compiler recognizes three lint-specific comments:

1. /*ARGSUSED*/

2. /*NOTREACHED*/

3. /*VARARGS*/

Like the lint program, the compiler suppresses warnings about certain conditions when you place these
comments at specific points in the source.

 120

Suppressing Warning Messages or Enabling Remarks
Use the -w or -Wn option to suppress warning messages or to enable remarks during the preprocessing
and compilation phases. You can enter the option with one of the following arguments:

Option Description

-w0,-w Displays error messages only. Both -w0 and -w display exactly the same messages.

-w1,-w2 Displays warnings and error messages. Both -w1 and -w2 display exactly the same messages.The compiler
uses this level as the default.

For some compilations, you might not want warnings for known and benign characteristics, such as the
K&R C constructs in your code. For example, the following command compiles newprog.cpp and
displays compiler errors, but not warnings:

! IA-32 System: prompt>icc -W0 newprog.cpp

! Itanium(TM)-based System: prompt>ecc -W0 newprog.cpp

Limiting the Number of Errors Reported
Use the -wnn option to limit the number of error messages displayed before the compiler aborts. By
default, if more than 100 errors are displayed, compilation aborts.

Option Description

-wnn Limit the number of error diagnostics that will be displayed prior to aborting compilation to n . Remarks and
warnings do not count towards this limit.

For example, the following command line specifies that if more than 50 error messages are displayed
during the compilation of a.cpp, compilation aborts.

! IA-32 Systems: prompt>icc -wn50 -c a.cpp

! Itanium(TM)-based Systems: prompt>ecc -wn50 -c a.cpp

Remark Messages
These messages report common, but sometimes unconventional, use of C or C++. The compiler does not
print or display remarks unless you specify level 4 for the -W option, as described in Suppressing Warning
Messages or Enabling Remarks. Remarks do not stop translation or linking. Remarks do not interfere with
any output files. The following are some representative remark messages:

! function declared implicitly

! type qualifiers are meaningless in this declaration

! controlling expression is constant

 121

Reference Information

Compiler Limits
Compiler Limits
The Compiler Limits table below shows the size or number of each item that the compiler can process. All
capacities shown in the table are tested values; the actual number can be greater than the number
shown.

Item Tested Values

Control structure nesting (block nesting) 512

Conditional compilation nesting 512

Declarator modifiers 512

Parenthesis nesting levels 512

Significant characters, internal identifier 2048

External identifier name length 64K

Number of external identifiers/file 128K

Number of identifiers in a single block 2048

Number of macros simultaneously defined 128K

Number of parameters to a function call 512

Number of parameters per macro 512

Number of characters in a string 128K

Bytes in an object 512K

Include file nesting depth 512

Case labels in a switch 32K

Members in one structure or union 32K

Enumeration constants in one enumeration 8192

Levels of structure nesting 320

 122

Intel C++ Key Files
Key Files Summary for IA-32 Compiler
The following tables list and briefly describe files that are installed for use by the IA-32 version of the
compiler.

/bin Files

File Description

iccvars.sh Batch file to set environment variables

icc.cfg Configuration file for use from command line

icc Intel® C++ Compiler

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

xild Tool used for Interprocedural Optimizations

/lib Files

File Description

libcprts.a C++ standard language library

libcxa.so C++ language library indicating I/O data location

libguide.a OpenMP library

libguide.so Shared OpenMP library

libimf.a Special purpose math library functions, including some transcendentals, built only for Linux*.

libintrins.a Intrinsic functions library

libirc.a Intel-specific library (optimizations)

libunwind.a Unwinder library

libsvml.a Short-vector math library (used by vectorizer)

 123

Key Files Summary for Itanium(TM) Compiler
The following tables list and briefly describe files that are installed for use by the Itanium(TM) compiler
version of the compiler.

/bin Files

File Description

eccvars.sh Batch file to set environment variables

ecc.cfg Configuration file for use from command line

ecc Intel® C++ Compiler

ias Assembler

profmerge Utility used for Profile Guided Optimizations

proforder Utility used for Profile Guided Optimizations

xild Tool used for Interprocedural Optimizations

/lib Files

File Description

libcprts.a C++ standard language library

libcxa.so C++ language library indicating I/O data location

libirc.a Intel-specific library (optimizations)

libm.a Math library

libguide.a OpenMP library

libguide.so Shared OpenMP library

libmofl.a Multiple Object Format Library, used by the Intel assembler

libmofl.so Shared Multiple Object Format Library, used by the Intel assembler

libunwinder.a Unwinder library

libintrins.a Intrinsic functions library

 124

Intel C++ Intrinsics Reference
Overview of the Intrinsics
Types of Intrinsics
The Intel® Pentium® 4 processor and other Intel processors have instructions to enable development of
optimized multimedia applications. The instructions are implemented through extensions to previously
implemented instructions. This technology uses the single instruction, multiple data (SIMD) technique. By
processing data elements in parallel, applications with media-rich bit streams are able to significantly
improve performance using SIMD instructions. The Intel® Itanium(TM) processor also supports these
instructions.

The most direct way to use these instructions is to inline the assembly language instructions into your
source code. However, this can be time-consuming and tedious, and assembly language inline
programming is not supported on all compilers. Instead, Intel provides easy implementation through the
use of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C variables
instead of hardware registers. Using these intrinsics frees programmers from having to program in
assembly language and manage registers. In addition, the compiler optimizes the instruction scheduling
so that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium instructions
that cannot be generated using the standard constructs of the C and C++ lanugages. The Intel® C++
Compiler also supports general purpose intrinsics that work across all IA-32 and Itanium-based platforms.

For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191.

Itanium(TM)-based Application Developer's Architecture Guide, Intel Corporation

Intrinsics Availability on Intel Processors

Processors MMX(TM) Technology
Intrinsics

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Itanium™ Processor
Instructions

Itanium
Processor

X X N/A X

Pentium 4
Processor

X X X N/A

Pentium III
Processor

X X N/A N/A

Pentium II
Processor

X N/A N/A N/A

Pentium with
MMX(TM)
Technology

X N/A N/A N/A

 125

Processors MMX(TM) Technology
Intrinsics

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Itanium™ Processor
Instructions

Pentium Pro
Processor

N/A N/A N/A N/A

Pentium
Processor

N/A N/A N/A N/A

Benefits of Using Intrinsics
The major benefit of using intrinsics is that you now have access to key features that are not available
using conventional coding practices. Intrinsics enable you to code with the syntax of C function calls and
variables instead of assembly language. Most MMX(TM) technology, Streaming SIMD Extensions, and
Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic that implements that instruction
directly. This frees you from managing registers and enables the compiler to optimize the instruction
scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new features:

! New Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing.

! New Data Types--Enable packing of up to 16 elements of data in one register.

The Streaming SIMD Extensions 2 intrinsics are defined only for IA-32, not for Itanium(TM)-based
systems. Streaming SIMD Extensions 2 operate on 128 bit quantities–2 64-bit double precision floating
point values. The Itanium architecture does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX instructions
use eight 64-bit registers (mm0 to mm7) which are aliased on the floating-point stack registers.

MMX(TM) Technology Registers

 126

Streaming SIMD Extensions Registers

The Streaming SIMD Extensions use eight 128-bit registers (xmm0 to xmm7).

These new data registers enable the processing of data elements in parallel. Because each register can
hold more than one data element, the processor can process more than one data element
simultaneously. This processing capability is also known as single-instruction multiple data processing
(SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing registers
and assembly programming. Further, the compiler optimizes the instruction scheduling so that your
executable runs faster.

Note

The MM and XMM registers are the SIMD registers used by the IA-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the Itanium-
based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit general registers and
the 64-bit significand of the 80-bit floating-point register.

New Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are used
as the operands to these intrinsic functions. The table below shows the new data type availability marked
with "X".

New Data Types Available

New Data Type MMX(TM)
Technology

Streaming SIMD
Extensions

Streaming SIMD
Extensions 2

Itanium(TM)
Processor

__m64 X X X X

__m128 N/A X X X

__m128d N/A N/A X X

__m128i N/A N/A X X

 127

__m64 Data Type

The __m64 data type is used to represent the contents of an MMX register, which is the register
that is used by the MMX technology intrinsics. The __m64 data type can hold eight 8-bit values,
four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __m128 data type is used to represent the contents of a Streaming SIMD Extension register
used by the Streaming SIMD Extension intrinsics. The __m128 data type can hold four 32-bit
floating values.

The __m128d data type can hold two 64-bit floating-point values.

The __m128i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values.

The compiler aligns __m128 local and global data to 16-byte boundaries on the stack. To align
integer, float, or double arrays, you can use the declspec statement.

New Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

! Use new data types only on either side of an assignment, as a return value, or as a parameter.
You cannot use it with other arithmetic expressions ("+", "-", and so on).

! Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

! Use new data types only with the respective intrinsics described in this documentation. The new
data types are supported on both sides of an assignment statement: as parameters to a function
call, and as a return value from a function call.

 128

Naming and Usage Syntax
Most of the intrinsic names use a notational convention as follows:

mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and sub for subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of each suffix denotes
whether the data is packed (p), extended packed (ep), or scalar (s). The remaining letters denote the
type:

• s single-precision floating point

• d double-precision floating point

• i128 signed 128-bit integer

• i64 signed 64-bit integer

• u64 unsigned 64-bit integer

• i32 signed 32-bit integer

• u32 unsigned 32-bit integer

• i16 signed 16-bit integer

• u16 unsigned 16-bit integer

• i8 signed 8-bit integer

• u8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};

__m128d t = _mm_load_pd(a);

The result is the same as either of the following:

__m128d t = _mm_set_pd(2.0, 1.0);

__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the xmm register that holds the value t will look as follows:

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments
to be immediates (constant integer literals).

 129

Intrinsic Syntax

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_name (parameters)

Where,

data_type Is the return data type, which can be either void, int, __m64, __m128, __m128d,
__m128i, __int64. Intrinsics that can be implemented across all IA may return other data types
as well, as indicated in the intrinsic syntax definitions.

intrinsic_name Is the name of the intrinsic, which behaves like a function that you can use in your C++ code instead
of inlining the actual instruction.

parameters Represents the parameters required by each intrinsic.

Intrinsics Implementation Across All IA
Intrinsics For Implementation for All IA
The intrinsics in this section function across all IA-32 and Itanium(TM)-based platforms. They are offered
as a convenience to the programmer. They are grouped as follows:

! Integer Arithmetic Related

! Floating-Point Related

! String and Block Copy Related

! Miscellaneous

Integer Arithmetic Related

Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Intrinsic Description

int abs(int) Returns the absolute value of an
integer.

long labs(long) Returns the absolute value of a long
integer.

unsigned long _lrotl(unsigned long value, int shift) Rotates bits left for an unsigned long
integer.

unsigned long _lrotr(unsigned long value, int shift) Rotates bits right for an unsigned long
integer.

unsigned int __rotl(unsigned int value, int shift) Rotates bits left for an unsigned integer.

unsigned int __rotr(unsigned int value, int shift) Rotates bits right for an unsigned
integer.

 130

Floating-point Related
Intrinsic Description

double fabs(double) Returns the absolute value of a floating-point value.

double log(double) Returns the natural logarithm ln(x), x>0, with double precision.

float logf(float) Returns the natural logarithm ln(x), x>0, with single precision.

double log10(double) Returns the base 10 logarithm log10(x), x>0, with double
precision.

float log10f(float) Returns the base 10 logarithm log10(x), x>0, with single
precision.

double exp(double) Returns the exponential function with double precision.

float expf(float) Returns the exponential function with single precision.

double pow(double, double) Returns the value of x to the power y with double precision.

float powf(float, float) Returns the value of x to the power y with single precision.

double sin(double) Returns the sine of x with double precision.

float sinf(float) Returns the sine of x with single precision.

double cos(double) Returns the cosine of x with double precision.

float cosf(float) Returns the cosine of x with single precision.

double tan(double) Returns the tangent of x with double precision.

float tanf(float) Returns the tangent of x with single precision.

double acos(double) Returns the arccosine of x with double precision

float acosf(float) Returns the arccosine of x with single precision

double acosh(double) Compute the inverse hyperbolic cosine of the argument with
double precision.

float acoshf(float) Compute the inverse hyperbolic cosine of the argument with
single precision.

double asin(double) Compute arc sine of the argument with double precision.

float asinf(float) Compute arc sine of the argument with single precision.

double asinh(double) Compute inverse hyperbolic sine of the argument with double
precision.

float asinhf(float) Compute inverse hyperbolic sine of the argument with single
precision.

double atan(double) Compute arc tangent of the argument with double precision.

float atanf(float) Compute arc tangent of the argument with single precision.

double atanh(double) Compute inverse hyperbolic tangent of the argument with double
precision.

 131

Intrinsic Description

float atanhf(float) Compute inverse hyperbolic tangent of the argument with single
precision.

float cabs(double)** Computes absolute value of complex number.

double ceil(double) Computes smallest integral value of double precision argument
not less than the argument.

float ceilf(float) Computes smallest integral value of single precision argument
not less than the argument.

double cosh(double) Computes the hyperbolic cosine of double precison argument.

float coshf(float) Computes the hyperbolic cosine of single precison argument.

float fabsf(float) Computes absolute value of single precision argument.

double floor(double) Computes the largest integral value of the double precision
argument not greater than the argument.

float floorf(float) Computes the largest integral value of the single precision
argument not greater than the argument.

double fmod(double) Computes the floating-point remainder of the division of the first
argument by the second argument with double precison.

float fmodf(float) Computes the floating-point remainder of the division of the first
argument by the second argument with single precison.

double hypot(double, double) Computes the length of the hypotenuse of a right angled triangle
with double precision.

float hypotf(float) Computes the length of the hypotenuse of a right angled triangle
with single precision.

double rint(double) Computes the integral value represented as double using the
IEEE rounding mode.

float rintf(float) Computes the integral value represented with single precision
using the IEEE rounding mode.

double sinh(double) Computes the hyperbolic sine of the double precision argument.

float sinhf(float) Computes the hyperbolic sine of the single precision argument.

float sqrtf(float) Computes the square root of the single precision argument.

double tanh(double) Computes the hyperbolic tangent of the double precision
argument.

float tanhf(float) Computes the hyperbolic tangent of the single precision
argument.

* Not implemented on Itanium-based systems.
** double in this case is a complex number made up of two single precision (32-bit floating point)
elements (real and imaginary parts).

 132

String and Block Copy Related

Note

The following are not implemented as intrinsics on Itanium(TM)-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in a string to a
fixed value.

void *memcmp(const void *cs, const void *ct, size_t n) Compares two regions of memory.
Return <0 if cs<ct, 0 if cs=ct, or
>0 if cs>ct.

void *memcpy(void *s, const void *ct, size_t n) Copies from memory. Returns s.

void *memset(void * s, int c, size_t n) Sets memory to a fixed value.
Returns s.

char *strcat(char * s, const char * ct) Appends to a string. Returns s.

int *strcmp(const char *, const char *) Compares two strings. Return <0 if
cs<ct, 0 if cs=ct, or >0 if
cs>ct.

char *strcpy(char * s, const char * ct) Copies a string. Returns s.

size_t strlen(const char * cs) Returns the length of string cs.

int strncmp(char *, char *, int) Compare two strings, but only
specified number of characters.

int strncpy(char *, char *, int) Copies a string, but only specified
number of characters.

Miscellaneous Intrinsics

Note

Except for _enable() and _disable() ,these functions have not been implemented for Itanium(TM)
instructions.

Intrinsic Description

void *_alloca(int) Allocates the buffers.

int _setjmp(jmp_buf)* A fast version of setjmp(), which bypasses the termination
handling. Saves the callee-save registers, stack pointer and
return address.

_exception_code(void) Returns the exception code.

_exception_info(void) Returns the exception information.

_abnormal_termination(void) Can be invoked only by termination handlers. Returns TRUE if
the termination handler is invoked as a result of a premature exit
of the corresponding try-finally region.

 133

void _enable() Enables the interrupt.

void _disable() Disables the interrupt.

int _bswap(int) Intrinsic that maps to the IA-32 instruction BSWAP (swap bytes).
Convert little/big endian 32-bit argument to big/little endian form

int _in_byte(int) Intrinsic that maps to the IA-32 instruction IN. Transfer data byte
from port specified by argument.

int _in_dword(int) Intrinsic that maps to the IA-32 instruction IN. Transfer double
word from port specified by argument.

int _in_word(int) Intrinsic that maps to the IA-32 instruction IN. Transfer word
from port specified by argument.

int _inp(int) Same as _in_byte

int _inpd(int) Same as _in_dword

int _inpw(int) Same as _in_word

int _out_byte(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer data
byte in second argument to port specified by first argument.

int _out_dword(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer double
word in second argument to port specified by first argument.

int _out_word(int, int) Intrinsic that maps to the IA-32 instruction OUT. Transfer word in
second argument to port specified by first argument.

int _outp(int, int) Same as _out_byte

int _outpd(int, int) Same as _out_dword

int _outpw(int, int) Same as _out_word

* Implemented as a library function call.

 134

MMX(TM) Technology Intrinsics
Support for MMX(TM) Technology
MMX(TM) technology is an extension to the Intel architecture (IA) instruction set. The MMX instruction set
adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight registers
can be directly addressed using the register names mm0 to mm7.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

The EMMS Instruction: Why You Need It
Using EMMS is like emptying a container to accommodate new content. For instance, MMX(TM)
instructions automatically enable an FP tag word in the register to enable use of the __m64 data type.
This resets the FP register set to alias it as the MMX register set. To enable the FP register set again,
reset the register state with the EMMS instruction or via the _mm_empty() intrinsic.

Why You Need EMMS to Reset After an MMX(TM) Instruction

Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-point
instruction can result in unexpected execution or poor performance.

 135

EMMS Usage Guidelines
The guidelines when to use EMMS are:

! Do not use on Itanium(TM)-based systems. There are no special registers (or overlay) for the
MMX(TM) instructions or Streaming SIMD Extensions on Itanium-based systems even though the
intrinsics are supported.

! Use _mm_empty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction–for example, before calculations on float, double or long double. You must be
aware of all situations when your code generates an MMX instruction with the Intel® C++
Compiler, i.e.:

! when using an MMX technology intrinsic

! when using Streaming SIMD Extension integer intrinsics that use the __m64 data type

! when referencing an __m64 data type variable

! when using an MMX instruction through inline assembly

! Do not use _mm_empty() before an MMX instruction, since using _mm_empty() before an
MMX instruction incurs an operation with no benefit (no-op).

! Use different functions for operations that use FP instructions and those that use MMX
instructions. This eliminates the need to empty the multimedia state within the body of a critical
loop.

! Use _mm_empty() during runtime initialization of __m64 and FP data types. This ensures
resetting the register between data type transitions.

! See the "Correct Usage" coding example below.

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z);
float f = init();

__m64 x = _m_paddd(y, z);
float f = (_mm_empty(), init());

For more documentation on EMMS, visit the http://developer.intel.com Web site.

 136

MMX™ Technology General Support Intrinsics
The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Corresponding
Instruction

Operation Signed Saturation

_m_empty _mm_empty EMMS Empty MM state -- --

_m_from_int _mm_cvtsi32_
si64

MOVD Convert from int -- --

_m_to_int _mm_cvtsi64_
si32

MOVD Convert from int -- --

_m_packsswb _mm_packs_pi
16

PACKSSWB Pack Yes Yes

_m_packssdw _mm_packs_pi
32

PACKSSDW Pack Yes Yes

_m_packuswb _mm_packs_pu
16

PACKUSWB Pack No Yes

_m_punpckhbw _mm_unpackhi
_pi8

PUNPCKHBW Interleave -- --

_m_punpckhwd _mm_unpackhi
_pi16

PUNPCKHWD Interleave -- --

_m_punpckhdq _mm_unpackhi
_pi32

PUNPCKHDQ Interleave -- --

_m_punpcklbw _mm_unpacklo
_pi8

PUNPCKLBW Interleave -- --

_m_punpcklwd _mm_unpacklo
_pi16

PUNPCKLWD Interleave -- --

_m_punpckldq _mm_unpacklo
_pi32

PUNPCKLDQ Interleave -- --

void _m_empty(void)

Empty the multimedia state.
 See The EMMS Instruction: Why You Need It figure for details.

__m64 _m_from_int(int i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero-extended to 64 bits.

int _m_to_int(__m64 m)

Convert the lower 32 bits of the __m64 object m to an integer.

 137

__m64 _m_packsswb(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with signed
saturation, and pack the four 16-bit values from m2 into the upper four 8-bit values of the result with
signed saturation.

__m64 _m_packssdw(__m64 m1, __m64 m2)

Pack the two 32-bit values from m1 into the lower two 16-bit values of the result with signed
saturation, and pack the two 32-bit values from m2 into the upper two 16-bit values of the result
with signed saturation.

__m64 _m_packuswb(__m64 m1, __m64 m2)

Pack the four 16-bit values from m1 into the lower four 8-bit values of the result with unsigned
saturation, and pack the four 16-bit values from m2 into the upper four 8-bit values of the result with
unsigned saturation.

__m64 _m_punpckhbw(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the high half of m1 with the four values from the high half of m2.
The interleaving begins with the data from m1.

__m64 _m_punpckhwd(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the high half of m1 with the two values from the high half of
m2. The interleaving begins with the data from m1.

__m64 _m_punpckhdq(__m64 m1, __m64 m2)

Interleave the 32-bit value from the high half of m1 with the 32-bit value from the high half of m2.
The interleaving begins with the data from m1.

__m64 _m_punpcklbw(__m64 m1, __m64 m2)

Interleave the four 8-bit values from the low half of m1 with the four values from the low half of m2.
The interleaving begins with the data from m1.

__m64 _m_punpcklwd(__m64 m1, __m64 m2)

Interleave the two 16-bit values from the low half of m1 with the two values from the low half of m2.
The interleaving begins with the data from m1.

__m64 _m_punpckldq(__m64 m1, __m64 m2)

Interleave the 32-bit value from the low half of m1 with the 32-bit value from the low half of m2. The
interleaving begins with the data from m1.

 138

MMX(TM) Technology Packed Arithmetic Intrinsics
The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Corresponding
 Instruction

Operation Signed Argument
Values/Bits

Result
Values/Bits

_m_paddb _mm_add_pi
8

PADDB Addition -- 8/8 8/8

_m_paddw _mm_add_pi
16

PADDW Addition -- 4/16 4/16

_m_paddd _mm_add_pi
32

PADDD Addition -- 2/32 2/32

_m_paddsb _mm_adds_p
i8

PADDSB Addition Yes 8/8 8/8

_m_paddsw _mm_adds_p
i16

PADDSW Addition Yes 4/16 4/16

_m_paddusb _mm_adds_p
u8

PADDUSB Addition No 8/8 8/8

_m_paddusw _mm_adds_p
u16

PADDUSW Addition No 4/16 4/16

_m_psubb _mm_sub_pi
8

PSUBB Subtraction -- 8/8 8/8

_m_psubw _mm_sub_pi
16

PSUBW Subtraction -- 4/16 4/16

_m_psubd _mm_sub_pi
32

PSUBD Subtraction -- 2/32 2/32

_m_psubsb _mm_subs_p
i8

PSUBSB Subtraction Yes 8/8 8/8

_m_psubsw _mm_subs_p
i16

PSUBSW Subtraction Yes 4/16 4/16

_m_psubusb _mm_subs_p
u8

PSUBUSB Subtraction No 8/8 8/8

_m_psubusw _mm_subs_p
u16

PSUBUSW Subtraction No 4/16 4/16

_m_pmaddwd _mm_madd_p
i16

PMADDWD Multiplication -- 4/16 2/32

_m_pmulhw _mm_mulhi_
pi16

PMULHW Multiplication Yes 4/16 4/16 (high)

_m_pmullw _mm_mullo_
pi16

PMULLW Multiplication -- 4/16 4/16 (low)

 139

__m64 _m_paddb(__m64 m1, __m64 m2)

Add the eight 8-bit values in m1 to the eight 8-bit values in m2.

__m64 _m_paddw(__m64 m1, __m64 m2)

Add the four 16-bit values in m1 to the four 16-bit values in m2.

__m64 _m_paddd(__m64 m1, __m64 m2)

Add the two 32-bit values in m1 to the two 32-bit values in m2.

__m64 _m_paddsb(__m64 m1, __m64 m2)

Add the eight signed 8-bit values in m1 to the eight signed 8-bit values in m2 using saturating
arithmetic.

__m64 _m_paddsw(__m64 m1, __m64 m2)

Add the four signed 16-bit values in m1 to the four signed 16-bit values in m2 using saturating
arithmetic.

__m64 _m_paddusb(__m64 m1, __m64 m2)

Add the eight unsigned 8-bit values in m1 to the eight unsigned 8-bit values in m2 and using
saturating arithmetic.

__m64 _m_paddusw(__m64 m1, __m64 m2)

Add the four unsigned 16-bit values in m1 to the four unsigned 16-bit values in m2 using saturating
arithmetic.

__m64 _m_psubb(__m64 m1, __m64 m2)

Subtract the eight 8-bit values in m2 from the eight 8-bit values in m1.

__m64 _m_psubw(__m64 m1, __m64 m2)

Subtract the four 16-bit values in m2 from the four 16-bit values in m1.

__m64 _m_psubd(__m64 m1, __m64 m2)

Subtract the two 32-bit values in m2 from the two 32-bit values in m1.

__m64 _m_psubsb(__m64 m1, __m64 m2)

Subtract the eight signed 8-bit values in m2 from the eight signed 8-bit values in m1 using saturating
arithmetic.

__m64 _m_psubsw(__m64 m1, __m64 m2)

Subtract the four signed 16-bit values in m2 from the four signed 16-bit values in m1 using
saturating arithmetic.

__m64 _m_psubusb(__m64 m1, __m64 m2)

Subtract the eight unsigned 8-bit values in m2 from the eight unsigned 8-bit values in m1 using
saturating arithmetic.

 140

__m64 _m_psubusw(__m64 m1, __m64 m2)

Subtract the four unsigned 16-bit values in m2 from the four unsigned 16-bit values in m1 using
saturating arithmetic.

__m64 _m_pmaddwd(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 producing four 32-bit intermediate
results, which are then summed by pairs to produce two 32-bit results.

__m64 _m_pmulhw(__m64 m1, __m64 m2)

Multiply four signed 16-bit values in m1 by four signed 16-bit values in m2 and produce the high 16
bits of the four results.

__m64 _m_pmullw(__m64 m1, __m64 m2)

Multiply four 16-bit values in m1 by four 16-bit values in m2 and produce the low 16 bits of the four
results.

MMX(TM) Technology Shift Intrinsics
The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Shift
Direction

Shift
Type

Corresponding
Instruction

_m_psllw _mm_sll_pi16 left Logical PSLLW

_m_psllwi _mm_slli_pi16 left Logical PSLLWI

_m_pslld _mm_sll_pi32 left Logical PSLLD

_m_pslldi _mm_slli_pi32 left Logical PSLLDI

_m_psllq _mm_sll_si64 left Logical PSLLQ

_m_psllqi _mm_slli_si64 left Logical PSLLQI

_m_psraw _mm_sra_pi16 right Arithmetic PSRAW

_m_psrawi _mm_srai_pi16 right Arithmetic PSRAWI

_m_psrad _mm_sra_pi32 right Arithmetic PSRAD

_m_psradi _mm_srai_pi32 right Arithmetic PSRADI

_m_psrlw _mm_srl_pi16 right Logical PSRLW

_m_psrlwi _mm_srli_pi16 right Logical PSRLWI

_m_psrld _mm_srl_pi32 right Logical PSRLD

_m_psrldi _mm_srli_pi32 right Logical PSRLDI

_m_psrlq _mm_srl_si64 right Logical PSRLQ

_m_psrlqi _mm_srli_si64 right Logical PSRLQI

 141

__m64 _m_psllw(__m64 m, __m64 count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros.

__m64 _m_psllwi(__m64 m, int count)

Shift four 16-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_pslld(__m64 m, __m64 count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros.

__m64 _m_pslldi(__m64 m, int count)

Shift two 32-bit values in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psllq(__m64 m, __m64 count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros.

__m64 _m_psllqi(__m64 m, int count)

Shift the 64-bit value in m left the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psraw(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in the sign bit.

__m64 _m_psrawi(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in the sign bit. For
the best performance, count should be a constant.

__m64 _m_psrad(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in the sign bit.

__m64 _m_psradi(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in the sign bit. For
the best performance, count should be a constant.

__m64 _m_psrlw(__m64 m, __m64 count)

Shift four 16-bit values in m right the amount specified by count while shifting in zeros.

__m64 _m_psrlwi(__m64 m, int count)

Shift four 16-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psrld(__m64 m, __m64 count)

Shift two 32-bit values in m right the amount specified by count while shifting in zeros.

 142

__m64 _m_psrldi(__m64 m, int count)

Shift two 32-bit values in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__m64 _m_psrlq(__m64 m, __m64 count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros.

__m64 _m_psrlqi(__m64 m, int count)

Shift the 64-bit value in m right the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics
The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
 Instruction

_m_pand _mm_and_si64 Bitwise AND PAND

_m_pandn _mm_andnot_si64 Logical NOT PANDN

_m_por _mm_or_si64 Bitwise OR POR

_m_pxor _mm_xor_si64 Bitwise Exclusive OR PXOR

__m64 _m_pand(__m64 m1, __m64 m2)

Perform a bitwise AND of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _m_pandn(__m64 m1, __m64 m2)

Perform a logical NOT on the 64-bit value in m1 and use the result in a bitwise AND with the 64-bit
value in m2.

__m64 _m_por(__m64 m1, __m64 m2)

Perform a bitwise OR of the 64-bit value in m1 with the 64-bit value in m2.

__m64 _m_pxor(__m64 m1, __m64 m2)

Perform a bitwise XOR of the 64-bit value in m1 with the 64-bit value in m2.

 143

MMX(TM) Technology Compare Intrinsics
The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Alternate
Name

Comparison Number of
Elements

Element
Bit Size

Corresponding
Instruction

_m_pcmpeqb _mm_cmpeq_pi
8

Equal 8 8 PCMPEQB

_m_pcmpeqw _mm_cmpeq_pi
16

Equal 4 16 PCMPEQW

_m_pcmpeqd _mm_cmpeq_pi
32

Equal 2 32 PCMPEQD

_m_pcmpgtb _mm_cmpgt_pi
8

Greater Than 8 8 PCMPGTB

_m_pcmpgtw _mm_cmpgt_pi
16

Greater Than 4 16 PCMPGTW

_m_pcmpgtd _mm_cmpgt_pi
32

Greater Than 2 32 PCMPGTD

__m64 _m_pcmpeqb(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are equal to the respective 8-bit values in m2 set the respective
8-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpeqw(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are equal to the respective 16-bit values in m2 set the
respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpeqd(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are equal to the respective 32-bit values in m2 set the
respective 32-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpgtb(__m64 m1, __m64 m2)

If the respective 8-bit values in m1 are greater than the respective 8-bit values in m2 set the
respective 8-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpgtw(__m64 m1, __m64 m2)

If the respective 16-bit values in m1 are greater than the respective 16-bit values in m2 set the
respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _m_pcmpgtd(__m64 m1, __m64 m2)

If the respective 32-bit values in m1 are greater than the respective 32-bit values in m2 set the
respective 32-bit resulting values to all ones, otherwise set them all to zeros.

 144

MMX(TM) Technology Set Intrinsics
The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Intrinsic
Name

Operation Number of
Elements

Element
Bit Size

Signed Reverse
Order

_mm_setzero_
si64

set to zero 1 64 No No

_mm_set_pi32 set integer values 2 32 No No

_mm_set_pi16 set integer values 4 16 No No

_mm_set_pi8 set integer values 8 8 No No

_mm_set1_pi3
2

set integer values 2 32 Yes No

_mm_set1_pi1
6

set integer values 4 16 Yes No

_mm_set1_pi8 set integer values 8 8 Yes No

_mm_setr_pi3
2

set integer values 2 32 No Yes

_mm_setr_pi1
6

set integer values 4 16 No Yes

_mm_setr_pi8 set integer values 8 8 No Yes

Note

In the following descriptions regarding the bits of the MMX(TM) register, bit 0 is the least significant and
bit 63 is the most significant.

__m64 _mm_setzero_si64()

PXOR
Sets the 64-bit value to zero.
r := 0x0

__m64 _mm_set_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values.
r0 := i0
r1 := i1

__m64 _mm_set_pi16(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values.
r0 := w0
r1 := w1
r2 := w2
r3 := w3

 145

__m64 _mm_set_pi8(char b7, char b6, char b5, char b4, char b3, char b2, char
b1, char b0)

(composite) Sets the 8 signed 8-bit integer values.
r0 := b0
r1 := b1
...
r7 := b7

__m64 _mm_set1_pi32(int i)

(composite) Sets the 2 signed 32-bit integer values to i.
r0 := i
r1 := i

__m64 _mm_set1_pi16(short s)

(composite) Sets the 4 signed 16-bit integer values to w.
r0 := w
r1 := w
r2 := w
r3 := w

__m64 _mm_set1_pi8(char b)

(composite) Sets the 8 signed 8-bit integer values to b.
r0 := b
r1 := b
...
r7 := b

__m64 _mm_setr_pi32(int i1, int i0)

(composite) Sets the 2 signed 32-bit integer values in reverse order.
r0 := i0
r1 := i1

__m64 _mm_setr_pi16(short s3, short s2, short s1, short s0)

(composite) Sets the 4 signed 16-bit integer values in reverse order.
r0 := w0
r1 := w1
r2 := w2
r3 := w3

__m64 _mm_setr_pi8(char b7, char b6, char b5, char b4, char b3, char b2, char
b1, char b0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.
r0 := b0
r1 := b1
...
r7 := b7

 146

MMX(TM) Technology Intrinsics on Itanium(TM) Architecture
MMX(TM) technology intrinsics provide access to the MMX technology instruction set on Itanium-based
systems. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent both
in name and functionality to the set of IA-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names generate the
same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the mmintrin.h header file.

Data Types

The C data type __m64 is used when using MMX technology intrinsics. It can hold eight 8-bit values, four
16-bit values, two 32-bit values, or one 64-bit value.

The __m64 data type is not a basic ANSI C data type. Therefore, observe the following usage restrictions:

! Use the new data type only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions (" + ", " - ", and so on).

! Use the new data type as objects in aggregates, such as unions, to access the byte elements and
structures; the address of an __m64 object may be taken.

! Use new data types only with the respective intrinsics described in this documentation.

For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Programmer's Reference Manual. For descriptions of data types, see the Intel Architecture Software
Developer's Manual, Volume 2.

Streaming SIMD Extensions
Intrinsics Support for Streaming SIMD Extensions
This section describes the C++ language-level features supporting the Streaming SIMD Extensions in the
Intel® C++ Compiler. These topics explain the following features of the intrinsics:

! Floating Point Intrinsics

! Arithmetic Operation Intrinsics

! Logical Operation Intrinsics

! Comparison Intrinsics

! Conversion Intrinsics

! Load Operations

! Set Operations

! Store Operations

! Cacheability Support

! Integer Intrinsics

 147

! Memory and Initialization Intrinsics

! Miscellaneous Intrinsics

! Using Streaming SIMD Extensions on Itanium(TM) Architecture

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Floating-point Intrinsics for Streaming SIMD Extensions
You should be familiar with the hardware features provided by the Streaming SIMD Extensions when
writing programs with the intrinsics. The following are four important issues to keep in mind:

! Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful that they may
consist of more than one machine-language instruction.

! Floating-point data loaded or stored as __m128 objects must be generally 16-byte-aligned.

! Some intrinsics require that their argument be immediates, that is, constant integers (literals), due
to the nature of the instruction.

! The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined.
Therefore, FP operations using NaN arguments will not match the expected behavior of the
corresponding assembly instructions.

Arithmetic Operations for Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic Instruction Operation R0 R1 R2 R3

_mm_add_ss ADDSS Addition a0 [op] b0 a1 a2 a3

_mm_add_ps ADDPS Addition a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_sub_ss SUBSS Subtraction a0 [op] b0 a1 a2 a3

_mm_sub_ps SUBPS Subtraction a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_mul_ss MULSS Multiplication a0 [op] b0 a1 a2 a3

_mm_mul_ps MULPS Multiplication a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_div_ss DIVSS Division a0 [op] b0 a1 a2 a3

_mm_div_ps DIVPS Division a0 [op] b0 a1 [op] b1 a2 [op] b2 a3 [op] b3

_mm_sqrt_s
s

SQRTSS Squared Root [op] a0 a1 a2 a3

_mm_sqrt_p
s

SQRTPS Squared Root [op] a0 [op] b1 [op] b2 [op] b3

_mm_rcp_ss RCPSS Reciprocal [op] a0 a1 a2 a3

 148

Intrinsic Instruction Operation R0 R1 R2 R3

_mm_rcp_ps RCPPS Reciprocal [op] a0 [op] b1 [op] b2 [op] b3

_mm_rsqrt_
ss

RSQRTSS Reciprocal
Square Root

[op] a0 a1 a2 a3

_mm_rsqrt_
ps

RSQRTPS Reciprocal
Squared Root

[op] a0 [op] b1 [op] b2 [op] b3

_mm_min_ss MINSS Computes
Minimum

[op](a0,b0) a1 a2 a3

_mm_min_ps MINPS Computes
Minimum

[op](a0,b0) [op] (a1, b1) [op] (a2, b2) [op] (a3, b3)

_mm_max_ss MAXSS Computes
Maximum

[op](a0,b0) a1 a2 a3

_mm_max_ps MAXPS Computes
Maximum

[op](a0,b0) [op] (a1, b1) [op] (a2, b2) [op] (a3, b3)

__m128 _mm_add_ss(__m128 a, __m128 b)

Adds the lower SP FP (single-precision, floating-point) values of a and b ; the upper 3 SP FP
values are passed through from a.

r0 := a0 + b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_add_ps(__m128 a, __m128 b)

Adds the four SP FP values of a and b.

r0 := a0 + b0
r1 := a1 + b1
r2 := a2 + b2
r3 := a3 + b3

__m128 _mm_sub_ss(__m128 a, __m128 b)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed through from
a.

r0 := a0 - b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sub_ps(__m128 a, __m128 b)

Subtracts the four SP FP values of a and b.

r0 := a0 - b0
r1 := a1 - b1
r2 := a2 - b2
r3 := a3 - b3

 149

__m128 _mm_mul_ss(__m128 a, __m128 b)

Multiplies the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from
a.

r0 := a0 * b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_mul_ps(__m128 a, __m128 b)

Multiplies the four SP FP values of a and b.

r0 := a0 * b0
r1 := a1 * b1
r2 := a2 * b2
r3 := a3 * b3

__m128 _mm_div_ss(__m128 a, __m128 b)

Divides the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from a.

r0 := a0 / b0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_div_ps(__m128 a, __m128 b)

Divides the four SP FP values of a and b.

r0 := a0 / b0
r1 := a1 / b1
r2 := a2 / b2
r3 := a3 / b3

__m128 _mm_sqrt_ss(__m128 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values are passed
through.

r0 := sqrt(a0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_sqrt_ps(__m128 a)

Computes the square roots of the four SP FP values of a.

r0 := sqrt(a0)
r1 := sqrt(a1)
r2 := sqrt(a2)
r3 := sqrt(a3)

__m128 _mm_rcp_ss(__m128 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the upper 3 SP FP
values are passed through.

r0 := recip(a0)
r1 := a1 ; r2 := a2 ; r3 := a3

 150

__m128 _mm_rcp_ps(__m128 a)

Computes the approximations of reciprocals of the four SP FP values of a.

r0 := recip(a0)
r1 := recip(a1)
r2 := recip(a2)
r3 := recip(a3)

__m128 _mm_rsqrt_ss(__m128 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP value of a; the
upper 3 SP FP values are passed through.

r0 := recip(sqrt(a0))
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_rsqrt_ps(__m128 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP values of a.

r0 := recip(sqrt(a0))
r1 := recip(sqrt(a1))
r2 := recip(sqrt(a2))
r3 := recip(sqrt(a3))

__m128 _mm_min_ss(__m128 a, __m128 b)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP values are
passed through from a.

r0 := min(a0, b0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_min_ps(__m128 a, __m128 b)

Computes the minimum of the four SP FP values of a and b.

r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m128 _mm_max_ss(__m128 a, __m128 b)

Computes the maximum of the lower SP FP values of a and b ; the upper 3 SP FP values are
passed through from a.

r0 := max(a0, b0)
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_max_ps(__m128 a, __m128 b)

Computes the maximum of the four SP FP values of a and b.

r0 := max(a0, b0)
r1 := max(a1, b1)
r2 := max(a2, b2)
r3 := max(a3, b3)

 151

Logical Operations for Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
Instruction

_mm_and_ps Bitwise AND ANDPS

_mm_andnot_ps Logical NOT ANDNPS

_mm_or_ps Bitwise OR ORPS

_mm_xor_ps Bitwise Exclusive OR XORPS

__m128 _mm_and_ps(__m128 a, __m128 b)

Computes the bitwise And of the four SP FP values of a and b.

r0 := a0 & b0
r1 := a1 & b1
r2 := a2 & b2
r3 := a3 & b3

__m128 _mm_andnot_ps(__m128 a, __m128 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.

r0 := ~a0 & b0
r1 := ~a1 & b1
r2 := ~a2 & b2
r3 := ~a3 & b3

__m128 _mm_or_ps(__m128 a, __m128 b)

Computes the bitwise OR of the four SP FP values of a and b.

r0 := a0 | b0
r1 := a1 | b1
r2 := a2 | b2
r3 := a3 | b3

__m128 _mm_xor_ps(__m128 a, __m128 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

r0 := a0 ^ b0
r1 := a1 ^ b1
r2 := a2 ^ b2
r3 := a3 ^ b3

 152

Comparisons for Streaming SIMD Extensions
Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP FP values of
a and b are compared, and a 32-bit mask is returned; the upper three SP FP values are passed through
from a. The mask is set to 0xffffffff for each element where the comparison is true and 0x0 where
the comparison is false.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Comparison Corresponding
Instruction

_mm_cmpeq_ss Equal CMPEQSS

_mm_cmpeq_ps Equal CMPEQPS

_mm_cmplt_ss Less Than CMPLTSS

_mm_cmplt_ps Less Than CMPLTPS

_mm_cmple_ss Less Than or Equal CMPLESS

_mm_cmple_ps Less Than or Equal CMPLEPS

_mm_cmpgt_ss Greater Than CMPLTSS

_mm_cmpgt_ps Greater Than CMPLTPS

_mm_cmpge_ss Greater Than or Equal CMPLESS

_mm_cmpge_ps Greater Than or Equal CMPLEPS

_mm_cmpneq_ss Not Equal CMPNEQSS

_mm_cmpneq_ps Not Equal CMPNEQPS

_mm_cmpnlt_ss Not Less Than CMPNLTSS

_mm_cmpnlt_ps Not Less Than CMPNLTPS

_mm_cmpnle_ss Not Less Than or Equal CMPNLESS

_mm_cmpnle_ps Not Less Than or Equal CMPNLEPS

_mm_cmpngt_ss Not Greater Than CMPNLTSS

_mm_cmpngt_ps Not Greater Than CMPNLTPS

_mm_cmpnge_ss Not Greater Than or Equal CMPNLESS

_mm_cmpnge_ps Not Greater Than or Equal CMPNLEPS

_mm_cmpord_ss Ordered CMPORDSS

_mm_cmpord_ps Ordered CMPORDPS

_mm_cmpunord_ss Unordered CMPUNORDSS

 153

Intrinsic
Name

Comparison Corresponding
Instruction

_mm_cmpunord_ps Unordered CMPUNORDPS

_mm_comieq_ss Equal COMISS

_mm_comilt_ps Less Than COMISS

_mm_comile_ss Less Than or Equal COMISS

_mm_comigt_ss Greater Than COMISS

_mm_comige_ss Greater Than or Equal COMISS

_mm_comineq_ss Not Equal COMISS

_mm_ucomieq_ss Equal UCOMISS

_mm_ucomilt_ss Less Than UCOMISS

_mm_ucomile_ss Less Than or Equal UCOMISS

_mm_ucomigt_ss Greater Than UCOMISS

_mm_ucomige_ss Greater Than or Equal UCOMISS

_mm_ucomineq_ss Not Equal UCOMISS

__m128 _mm_cmpeq_ss(__m128 a, __m128 b)

Compare for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpeq_ps(__m128 a, __m128 b)

Compare for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffff : 0x0
r2 := (a2 == b2) ? 0xffffffff : 0x0
r3 := (a3 == b3) ? 0xffffffff : 0x0

__m128 _mm_cmplt_ss(__m128 a, __m128 b)

Compare for less-than.

r0 := (a0 < b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmplt_ps(__m128 a, __m128 b)

Compare for less-than.

r0 := (a0 < b0) ? 0xffffffff : 0x0
r1 := (a1 < b1) ? 0xffffffff : 0x0
r2 := (a2 < b2) ? 0xffffffff : 0x0
r3 := (a3 < b3) ? 0xffffffff : 0x0

 154

__m128 _mm_cmple_ss(__m128 a, __m128 b)

Compare for less-than-or-equal.

r0 := (a0 <= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmple_ps(__m128 a, __m128 b)

Compare for less-than-or-equal.

r0 := (a0 <= b0) ? 0xffffffff : 0x0
r1 := (a1 <= b1) ? 0xffffffff : 0x0
r2 := (a2 <= b2) ? 0xffffffff : 0x0
r3 := (a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpgt_ss(__m128 a, __m128 b)

Compare for greater-than.

r0 := (a0 > b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpgt_ps(__m128 a, __m128 b)

Compare for greater-than.

r0 := (a0 > b0) ? 0xffffffff : 0x0
r1 := (a1 > b1) ? 0xffffffff : 0x0
r2 := (a2 > b2) ? 0xffffffff : 0x0
r3 := (a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpge_ss(__m128 a, __m128 b)

Compare for greater-than-or-equal.

r0 := (a0 >= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpge_ps(__m128 a, __m128 b)

Compare for greater-than-or-equal.

r0 := (a0 >= b0) ? 0xffffffff : 0x0
r1 := (a1 >= b1) ? 0xffffffff : 0x0
r2 := (a2 >= b2) ? 0xffffffff : 0x0
r3 := (a3 >= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpneq_ss(__m128 a, __m128 b)

Compare for inequality.

r0 := (a0 != b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpneq_ps(__m128 a, __m128 b)

Compare for inequality.

r0 := (a0 != b0) ? 0xffffffff : 0x0
r1 := (a1 != b1) ? 0xffffffff : 0x0
r2 := (a2 != b2) ? 0xffffffff : 0x0
r3 := (a3 != b3) ? 0xffffffff : 0x0

 155

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)

Compare for not-less-than.

r0 := !(a0 < b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b)

Compare for not-less-than.

r0 := !(a0 < b0) ? 0xffffffff : 0x0
r1 := !(a1 < b1) ? 0xffffffff : 0x0
r2 := !(a2 < b2) ? 0xffffffff : 0x0
r3 := !(a3 < b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

r0 := !(a0 <= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnle_ps(__m128 a, __m128 b)

Compare for not-less-than-or-equal.

r0 := !(a0 <= b0) ? 0xffffffff : 0x0
r1 := !(a1 <= b1) ? 0xffffffff : 0x0
r2 := !(a2 <= b2) ? 0xffffffff : 0x0
r3 := !(a3 <= b3) ? 0xffffffff : 0x0

__m128 _mm_cmpngt_ss(__m128 a, __m128 b)

Compare for not-greater-than.

r0 := !(a0 > b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpngt_ps(__m128 a, __m128 b)

Compare for not-greater-than.

r0 := !(a0 > b0) ? 0xffffffff : 0x0
r1 := !(a1 > b1) ? 0xffffffff : 0x0
r2 := !(a2 > b2) ? 0xffffffff : 0x0
r3 := !(a3 > b3) ? 0xffffffff : 0x0

__m128 _mm_cmpnge_ss(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.

r0 := !(a0 >= b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpnge_ps(__m128 a, __m128 b)

Compare for not-greater-than-or-equal.

r0 := !(a0 >= b0) ? 0xffffffff : 0x0
r1 := !(a1 >= b1) ? 0xffffffff : 0x0
r2 := !(a2 >= b2) ? 0xffffffff : 0x0
r3 := !(a3 >= b3) ? 0xffffffff : 0x0

 156

__m128 _mm_cmpord_ss(__m128 a, __m128 b)

Compare for ordered.

r0 := (a0 ord? b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpord_ps(__m128 a, __m128 b)

Compare for ordered.

r0 := (a0 ord? b0) ? 0xffffffff : 0x0
r1 := (a1 ord? b1) ? 0xffffffff : 0x0
r2 := (a2 ord? b2) ? 0xffffffff : 0x0
r3 := (a3 ord? b3) ? 0xffffffff : 0x0

__m128 _mm_cmpunord_ss(__m128 a, __m128 b)

Compare for unordered.

r0 := (a0 unord? b0) ? 0xffffffff : 0x0
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cmpunord_ps(__m128 a, __m128 b)

Compare for unordered.

r0 := (a0 unord? b0) ? 0xffffffff : 0x0
r1 := (a1 unord? b1) ? 0xffffffff : 0x0
r2 := (a2 unord? b2) ? 0xffffffff : 0x0
r3 := (a3 unord? b3) ? 0xffffffff : 0x0

int _mm_comieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are equal, 1
is returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

 157

int _mm_comige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_ucomile_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than or equal to b,
1 is returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

 158

Conversion Operations for Streaming SIMD Extensions
The conversions operations are listed in the following table followed by a description of each intrinsic with
the most recent mnemonic naming convention. The alternate name is provided in case you have used
these intrinsics before.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Corresponding
Instruction

_mm_cvt_ss2si _mm_cvtss_si32 CVTSS2SI

_mm_cvt_ps2pi _mm_cvtps_pi32 CVTPS2PI

_mm_cvtt_ss2si _mm_cvttss_si32 CVTTSS2SI

_mm_cvtt_ps2pi _mm_cvttps_pi32 CVTTPS2PI

_mm_cvt_si2ss _mm_cvtsi32_ss CVTSI2SS

_mm_cvt_pi2ps _mm_cvtpi32_ps CVTTPS2PI

_mm_cvtpi16_ps composite

_mm_cvtpu16_ps composite

_mm_cvtpi8_ps composite

_mm_cvtpu8_ps composite

_mm_cvtpi32x2_ps composite

_mm_cvtps_pi16 composite

_mm_cvtps_pi8 composite

int _mm_cvt_ss2si(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current rounding mode.

r := (int)a0

__m64 _mm_cvt_ps2pi(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the current rounding
mode, returning the integers in packed form.

r0 := (int)a0
r1 := (int)a1

int _mm_cvtt_ss2si(__m128 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.

r := (int)a0

 159

__m64 _mm_cvtt_ps2pi(__m128 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation, returning the integers
in packed form.

r0 := (int)a0
r1 := (int)a1

__m128 _mm_cvt_si2ss(__m128, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed
through from a.

r0 := (float)b
r1 := a1 ; r2 := a2 ; r3 := a3

__m128 _mm_cvt_pi2ps(__m128, __m64)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two SP
FP values are passed through from a.

r0 := (float)b0
r1 := (float)b1
r2 := a2
r3 := a3

__inline __m128 _mm_cvtpi16_ps(__m64 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.

r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpu16_ps(__m64 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP values.

r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpi8_ps(__m64 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP values.

r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

__inline __m128 _mm_cvtpu8_ps(__m64 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP values.

r0 := (float)a0
r1 := (float)a1
r2 := (float)a2
r3 := (float)a3

 160

__inline __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to
four single precision FP values.

r0 := (float)a0
r1 := (float)a1
r2 := (float)b0
r3 := (float)b1

__inline __m64 _mm_cvtps_pi16(__m128 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.

r0 := (short)a0
r1 := (short)a1
r2 := (short)a2
r3 := (short)a3

__inline __m64 _mm_cvtps_pi8(__m128 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer values of the
result.

r0 := (char)a0
r1 := (char)a1
r2 := (char)a2
r3 := (char)a3

Load Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

__m128 _mm_load_ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.

r0 := *p
r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load_ps1(float * p)

Loads a single SP FP value, copying it into all four words.

r0 := *p
r1 := *p
r2 := *p
r3 := *p

 161

__m128 _mm_load_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

r0 := p[0]
r1 := p[1]
r2 := p[2]
r3 := p[3]

__m128 _mm_loadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

r0 := p[0]
r1 := p[1]
r2 := p[2]
r3 := p[3]

__m128 _mm_loadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

r0 := p[3]
r1 := p[2]
r2 := p[1]
r3 := p[0]

Set Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

__m128 _mm_set_ss(float w)

Sets the low word of an SP FP value to w and clears the upper three words.

r0 := w
r1 := r2 := r3 := 0.0

__m128 _mm_set_ps1(float w)

Sets the four SP FP values to w.

r0 := r1 := r2 := r3 := w

__m128 _mm_set_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

r0 := w
r1 := x
r2 := y
r3 := z

 162

__m128 _mm_setr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

r0 := z
r1 := y
r2 := x
r3 := w

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.

r0 := r1 := r2 := r3 := 0.0

Store Operations for Streaming SIMD Extensions
See summary table in Summary of Memory and Initialization topic.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

void _mm_store_ss(float * p, __m128 a)

Stores the lower SP FP value.

*p := a0

void _mm_store_ps1(float * p, __m128 a)

Stores the lower SP FP value across four words.

p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void _mm_store_ps(float *p, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[0] := a0
p[1] := a1
p[2] := a2
p[3] := a3

void _mm_storeu_ps(float *p, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

p[0] := a0
p[1] := a1
p[2] := a2
p[3] := a3

 163

void _mm_storer_ps(float * p, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0] := a3
p[1] := a2
p[2] := a1
p[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

r0 := b0
r1 := a1
r2 := a2
r3 := a3

Cacheability Support Using Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin_loop:pause

cmp eax, A

jne spin_loop

In the above example, the program spins until memory location A matches the value in register eax. The
code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the
attempt to get a lock has failed.

get_lock: mov eax, 1

xchg eax, A ; Try to get lock

cmp eax, 0 ; Test if successful

jne spin_loop

Critical Section:

<critical_section code>

mov A, 0 ; Release lock

 164

jmp continue

spin_loop: pause; Spin-loop hint

cmp 0, A ; Check lock availability

jne spin_loop

jmp get_lock

continue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for processor
type (a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors
which use the PAUSE as a hint there can be significant performance benefit.

Integer Intrinsics Using Streaming SIMD Extensions
The integer intrinsics are listed in the table below followed by a description of each intrinsic with the most
recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_m_pextrw _mm_extract_pi16 Extract on of four words PEXTRW

_m_pinsrw _mm_insert_pi16 Insert a word PINSRW

_m_pmaxsw _mm_max_pi16 Compute the maximum PMAXSW

_m_pmaxub _mm_max_pu8 Compute the maximum,
unsigned

PMAXUB

_m_pminsw _mm_min_pi16 Compute the minimum PMINSW

_m_pminub _mm_min_pu8 Compute the minimum,
unsigned

PMINUB

_m_pmovmskb _mm_movemask_pi8 Create an eight-bit mask PMOVMSKB

_m_pmulhuw _mm_mulhi_pu16 Multiply, return high bits PMULHUW

_m_pshufw _mm_shuffle_pi16 Return a combination of four
words

PSHUFW

_m_maskmovq _mm_maskmove_si64 Conditional Store MASKMOVQ

_m_pavgb _mm_avg_pu8 Compute rounded average PAVGB

_m_pavgw _mm_avg_pu16 Compute rounded average PAVGW

_m_psadbw _mm_sad_pu8 Compute sum of absolute
differences

PSADBW

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

 165

int _m_pextrw(__m64 a, int n)

Extracts one of the four words of a. The selector n must be an immediate.

r := (n==0) ? a0 : ((n==1) ? a1 : ((n==2) ? a2 : a3))

__m64 _m_pinsrw(__m64 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an
 immediate.

r0 := (n==0) ? d : a0;
r1 := (n==1) ? d : a1;
r2 := (n==2) ? d : a2;
r3 := (n==3) ? d : a3;

__m64 _m_pmaxsw(__m64 a, __m64 b)

Computes the element-wise maximum of the words in a and b.

r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m64 _m_pmaxub(__m64 a, __m64 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

__m64 _m_pminsw(__m64 a, __m64 b)

Computes the element-wise minimum of the words in a and b.

r0 := min(a0, b0)
r1 := min(a1, b1)
r2 := min(a2, b2)
r3 := min(a3, b3)

__m64 _m_pminub(__m64 a, __m64 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

int _m_pmovmskb(__m64 a)

Creates an 8-bit mask from the most significant bits of the bytes in a.

r := sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

 166

__m64 _m_pmulhuw(__m64 a, __m64 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate
results.

r0 := hiword(a0 * b0)
r1 := hiword(a1 * b1)
r2 := hiword(a2 * b2)
r3 := hiword(a3 * b3)

__m64 _m_pshufw(__m64 a, int n)

Returns a combination of the four words of a. The selector n must be an immediate.

r0 := word (n&0x3) of a
r1 := word ((n>>2)&0x3) of a
r2 := word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

void _m_maskmovq(__m64 d, __m64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector n
determines whether the corresponding byte in d will be stored.

if (sign(n0)) p[0] := d0
if (sign(n1)) p[1] := d1
...
if (sign(n7)) p[7] := d7

__m64 _m_pavgb(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned bytes in a and b.

t = (unsigned short)a0 + (unsigned short)b0
r0 = (t >> 1) | (t & 0x01)
...
t = (unsigned short)a7 + (unsigned short)b7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

__m64 _m_pavgw(__m64 a, __m64 b)

Computes the (rounded) averages of the unsigned words in a and b.

t = (unsigned int)a0 + (unsigned int)b0
r0 = (t >> 1) | (t & 0x01)
...
t = (unsigned word)a7 + (unsigned word)b7
r7 = (unsigned short)((t >> 1) | (t & 0x01))

__m64 _m_psadbw(__m64 a, __m64 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b, returning he value
in the lower word. The upper three words are cleared.

r0 = abs(a0-b0) +... + abs(a7-b7)
r1 = r2 = r3 = 0

 167

Memory and Initialization Using Streaming SIMD Extensions
This section describes the load, set, and store operations, which let you load and store data into
memory. The load and set operations are similar in that both initialize __m128 data. However, the set
operations take a float argument and are intended for initialization with constants, whereas the load
operations take a floating point argument and are intended to mimic the instructions for loading data from
memory. The store operation assigns the initialized data to the address.

The intrinsics are listed in the following table. Syntax and a brief description are contained the following
topics.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_mm_load_ss Load the low value and clear
the three high values

MOVSS

_mm_load_ps1 _mm_load1_ps Load one value into all four
words

MOVSS + Shuffling

_mm_load_ps Load four values, address
aligned

MOVAPS

_mm_loadu_ps Load four values, address
unaligned

MOVUPS

_mm_loadr_ps Load four values, in reverse
order

MOVAPS + Shuffling

_mm_set_ss Set the low value and clear the
three high values

Composite

_mm_set_ps1 _mm_set1_ps Set all four words with the same
value

Composite

_mm_set_ps Set four values, address aligned Composite

_mm_setr_ps Set four values, in reverse order Composite

_mm_setzero_ps Clear all four values Composite

_mm_store_ss Store the low value MOVSS

_mm_store_ps1 _mm_store1_ps Store the low value across all
four words. The address must
be 16-byte aligned.

Shuffling + MOVSS

_mm_store_ps Store four values, address
aligned

MOVAPS

_mm_storeu_ps Store four values, address
unaligned

MOVUPS

_mm_storer_ps Store four values, in reverse
order

MOVAPS + Shuffling

_mm_move_ss Set the low word, and pass in
three high values

MOVSS

 168

Intrinsic
Name

Alternate
Name

Operation Corresponding
Instruction

_mm_getcsr Return register contents STMXCSR

_mm_setcsr Control Register LDMXCSR

_mm_prefetch

_mm_stream_pi

_mm_stream_ps

_mm_sfence

__m128 _mm_load_ss(float const*a)

Loads an SP FP value into the low word and clears the upper three words.

r0 := *a
r1 := 0.0 ; r2 := 0.0 ; r3 := 0.0

__m128 _mm_load_ps1(float const*a)

Loads a single SP FP value, copying it into all four words.

r0 := *a
r1 := *a
r2 := *a
r3 := *a

__m128 _mm_load_ps(float const*a)

Loads four SP FP values. The address must be 16-byte-aligned.

r0 := a[0]
r1 := a[1]
r2 := a[2]
r3 := a[3]

__m128 _mm_loadu_ps(float const*a)

Loads four SP FP values. The address need not be 16-byte-aligned.

r0 := a[0]
r1 := a[1]
r2 := a[2]
r3 := a[3]

__m128 _mm_loadr_ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

r0 := a[3]
r1 := a[2]
r2 := a[1]
r3 := a[0]

 169

__m128 _mm_set_ss(float a)

Sets the low word of an SP FP value to a and clears the upper three words.

r0 := c
r1 := r2 := r3 := 0.0

__m128 _mm_set_ps1(float a)

Sets the four SP FP values to a.

r0 := r1 := r2 := r3 := a

__m128 _mm_set_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs.

r0 := a
r1 := b
r2 := c
r3 := d

__m128 _mm_setr_ps(float a, float b, float c, float d)

Sets the four SP FP values to the four inputs in reverse order.

r0 := d
r1 := c
r2 := b
r3 := a

__m128 _mm_setzero_ps(void)

Clears the four SP FP values.

r0 := r1 := r2 := r3 := 0.0

void _mm_store_ss(float *v, __m128 a)

Stores the lower SP FP value.

*v := a0

void _mm_store_ps1(float *v, __m128 a)

Stores the lower SP FP value across four words.

v[0] := a0
v[1] := a0
v[2] := a0
v[3] := a0

void _mm_store_ps(float *v, __m128 a)

Stores four SP FP values. The address must be 16-byte-aligned.

v[0] := a0
v[1] := a1
v[2] := a2
v[3] := a3

 170

void _mm_storeu_ps(float *v, __m128 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

v[0] := a0
v[1] := a1
v[2] := a2
v[3] := a3

void _mm_storer_ps(float *v, __m128 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

v[0] := a3
v[1] := a2
v[2] := a1
v[3] := a0

__m128 _mm_move_ss(__m128 a, __m128 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

r0 := b0
r1 := a1
r2 := a2
r3 := a3

unsigned int _mm_getcsr(void)

Returns the contents of the control register.

void _mm_setcsr(unsigned int i)

Sets the control register to the value specified.

void _mm_prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location "closer" to the
processor. The value sel specifies the type of prefetch operation: the constants _MM_HINT_T0,
_MM_HINT_T1, _MM_HINT_T2, and _MM_HINT_NTA should be used, corresponding to the type of
prefetch instruction.

void _mm_stream_pi(__m64 *p, __m64 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the caches. This intrinsic
requires you to empty the multimedia state for the mmx register. See The EMMS Instruction: Why
You Need It and When to Use It topic.

void _mm_stream_ps(float *p, __m128 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the caches. The address
must be 16-byte-aligned.

void _mm_sfence(void)

(uses SFENCE) Guarantees that every preceding store is globally visible before any subsequent
store.

 171

Miscellaneous Intrinsics Using Streaming SIMD Extensions
The prototypes for Streaming SIMD Extensions intrinsics are in the xmmintrin.h header file.

Intrinsic
Name

Operation Corresponding
Instruction

_mm_shuffle_ps Shuffle SHUFPS

_mm_unpackhi_ps Unpack High UNPCKHPS

_mm_unpacklo_ps Unpack Low UNPCKLPS

_mm_loadh_pi Load High MOVHPS reg, mem

_mm_storeh_pi Store High MOVHPS mem, reg

_mm_movehl_ps Move High to Low MOVHLPS

_mm_movelh_ps Move Low to High MOVLHPS

_mm_loadl_pi Load Low MOVLPS reg, mem

_mm_storel_pi Store Low MOVLPS mem, reg

_mm_movemask_ps Create four-bit mask MOVMSKPS

__m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

Selects four specific SP FP values from a and b, based on the mask imm8. The mask must be an
immediate. See Macro Function for Shuffle Using Streaming SIMD Extensions for a description of
the shuffle semantics.

__m128 _mm_unpackhi_ps(__m128 a, __m128 b)

Selects and interleaves the upper two SP FP values from a and b.

r0 := a2
r1 := b2
r2 := a3
r3 := b3

__m128 _mm_unpacklo_ps(__m128 a, __m128 b)

Selects and interleaves the lower two SP FP values from a and b.

r0 := a0
r1 := b0
r2 := a1
r3 := b1

 172

__m128 _mm_loadh_pi(__m128, __m64 const *p)

Sets the upper two SP FP values with 64 bits of data loaded from the address p.

r0 := a0
r1 := a1
r2 := *p0
r3 := *p1

void _mm_storeh_pi(__m64 *p, __m128 a)

Stores the upper two SP FP values to the address p.

*p0 := a2
*p1 := a3

__m128 _mm_movehl_ps(__m128 a, __m128 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The upper 2 SP FP
values of a are passed through to the result.

r3 := a3
r2 := a2
r1 := b3
r0 := b2

__m128 _mm_movelh_ps(__m128 a, __m128 b)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The lower 2 SP FP
values of a are passed through to the result.

r3 := b1
r2 := b0
r1 := a1
r0 := a0

__m128 _mm_loadl_pi(__m128 a, __m64 const *p)

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two
values are passed through from a.

r0 := *p0
r1 := *p1
r2 := a2
r3 := a3

void _mm_storel_pi(__m64 *p, __m128 a)

Stores the lower two SP FP values of a to the address p.

*p0 := a0
*p1 := a1

int _mm_movemask_ps(__m128 a)

Creates a 4-bit mask from the most significant bits of the four SP FP values.

r := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)

 173

Using Streaming SIMD Extensions on Itanium(TM) Architecture
The Streaming SIMD Extensions intrinsics provide access to Itanium(TM) instructions for Streaming SIMD
Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent
both in name and functionality to the set of IA-32-based Streaming SIMD Extensions intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided by the
Streaming SIMD Extensions. Keep the following four important issues in mind:

! Certain intrinsics are provided only for compatibility with previously-defined IA-32 intrinsics. Using
them on Itanium-based systems probably leads to performance degradation. See section below.

! Floating-point (FP) data loaded stored as __m128 objects must be 16-byte-aligned.

! Some intrinsics require that their arguments be immediates– that is, constant integers (literals),
due to the nature of the instruction.

Data Types

The new data type __m128 is used with the Streaming SIMD Extensions intrinsics. It represents a 128-bit
quantity composed of four single-precision FP values. This corresponds to the 128-bit IA-32 Streaming
SIMD Extensions register.

The compiler aligns __m128 local data to 16-byte boundaries on the stack. Global data of these types is
also 16 byte-aligned. To align integer, float, or double arrays, you can use the declspec
alignment.

Because Itanium instructions treat the Streaming SIMD Extensions registers in the same way whether
you are using packed or scalar data, there is no __m32 data type to represent scalar data. For scalar
operations, use the __m128 objects and the "scalar" forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references. But, for better performance the
packed form should be substituting for the scalar form whenever possible.

The address of a __m128 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

Streaming SIMD Extensions intrinsics are defined for the __m128 data type, a 128-bit quantity consisting
of four single-precision FP values. SIMD instructions for Itanium-based systems operate on 64-bit FP
register quantities containing two single-precision floating-point values. Thus, each __m128 operand is
actually a pair of FP registers and therefore each intrinsic corresponds to at least one pair of Itanium
instructions operating on the pair of FP register operands.

Compatibility versus Performance

Many of the Streaming SIMD Extensions intrinsics for Itanium-based systems were created for
compatibility with existing IA-32 intrinsics and not for performance. In some situations, intrinsic usage that
improved performance on IA-32 will not do so on Itanium-based systems. One reason for this is that some
intrinsics map nicely into the IA-32 instruction set but not into the Itanium instruction set. Thus, it is
important to differentiate between intrinsics which were implemented for a performance advantage on
Itanium-based systems, and those implemented simply to provide compatibility with existing IA-32 code.

 174

The following intrinsics are likely to reduce performance and should only be used to initially port legacy
code or in non-critical code sections:

! Any Streaming SIMD Extensions scalar intrinsic (_ss variety) - use packed (_ps) version if
possible

! comi and ucomi Streaming SIMD Extensions comparisons - these correspond to IA-32 COMISS
and UCOMISS instructions only. A sequence of Itanium instructions are required to implement
these.

! Conversions in general are multi-instruction operations. These are particularly expensive:
_mm_cvtpi16_ps, _mm_cvtpu16_ps, _mm_cvtpi8_ps, _mm_cvtpu8_ps,
_mm_cvtpi32x2_ps, _mm_cvtps_pi16, _mm_cvtps_pi8

! Streaming SIMD Extensions utility intrinsic _mm_movemask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation intrinsics
(rcp and rsqrt) are much faster than the true div and sqrt intrinsics.

Macro Functions

Macro Function for Shuffle Using Streaming SIMD Extensions
The Streaming SIMD Extensions provide a macro function to help create constants that describe shuffle
operations. The macro takes four small integers (in the range of 0 to 3) and combines them into an 8-bit
immediate value used by the SHUFPS instruction. See the example below.

Shuffle Function Macro

You can view the four integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

 175

Macro Functions to Read and Write the Control Registers
The following macro functions enable you to read and write bits to and from the control register. For
details, see Set Operations. For Itanium(TM)-based systems, these macros do not allow you to access all
of the bits of the FPSR. See the descriptions for the getfpsr() and setfpsr() intrinsics in the Native
Intrinsics for Itanium Instructions topic.

Exception State Macros Macro Arguments

_MM_SET_EXCEPTION_STATE(x) _MM_EXCEPT_INVALID

_MM_GET_EXCEPTION_STATE() _MM_EXCEPT_DIV_ZERO

 _MM_EXCEPT_DENORM

Macro Definitions
Write to and read from the sixth-least significant control register
bit, respectively.

_MM_EXCEPT_OVERFLOW

 _MM_EXCEPT_UNDERFLOW

 _MM_EXCEPT_INEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

Exception Mask Macros Macro Arguments

_MM_SET_EXCEPTION_MASK(x) _MM_MASK_INVALID

_MM_GET_EXCEPTION_MASK () _MM_MASK_DIV_ZERO

 _MM_MASK_DENORM

Macro Definitions
Write to and read from the seventh through twelfth control
register bits, respectively. Note: All six exception mask bits are
always affected. Bits not set explicitly are cleared.

_MM_MASK_OVERFLOW

 _MM_MASK_UNDERFLOW

 _MM_MASK_INEXACT

The following example masks the overflow and underflow exceptions and unmasks all other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

_MM_SET_EXCEPTION_MASK(MM_MASK_OVERFLOW | _MM_MASK_UNDERFLOW)

 176

Rounding Mode Macro Arguments

_MM_SET_ROUNDING_MODE(x) _MM_ROUND_NEAREST

_MM_GET_ROUNDING_MODE() _MM_ROUND_DOWN

Macro Definition
Write to and read from bits thirteen and fourteen of the control
register.

_MM_ROUND_UP

 _MM_ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

if (_MM_GET_ROUNDING_MODE() == _MM_ROUND_TOWARD_ZERO)

{

/* Rounding mode is round toward zero */

}

Flush-to-Zero Mode Macro Arguments

_MM_SET_FLUSH_ZERO_MODE(x) _MM_FLUSH_ZERO_ON

_MM_GET_FLUSH_ZERO_MODE() _MM_FLUSH_ZERO_OFF

Macro Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF

_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_OFF)

Macro Function for Matrix Transposition
The Streaming SIMD Extensions also provide the following macro function to transpose a 4 by 4 matrix of
single precision floating point values.

_MM_TRANSPOSE4_PS(row0, row1, row2, row3)

The arguments row0, row1, row2, and row3 are __m128 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments row0, row1,
row2, and row3 where row0 now holds column 0 of the original matrix, row1 now holds column 1 of the
original matrix, and so on.

 177

The transposition function of this macro is illustrated in the "Matrix Transposition Using the
_MM_TRANSPOSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

 178

Streaming SIMD Extensions 2
Overview of Streaming SIMD Extensions 2 Intrinsics
This section describes the C++ language-level features supporting the Intel® Pentium® 4 processor
Streaming SIMD Extensions 2 in the Intel® C++ Compiler, which are divided into two categories:

! Floating-point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (__m128d).

! Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the extended-precision integer data type (__m128i).

Note

The Pentium 4 processor Streaming SIMD Extensions 2 intrinsics are defined only for IA-32 platforms, not
Itanium(TM)-based platforms. Pentium 4 processor Streaming SIMD Extensions 2 operate on 128 bit
quantities–2 64-bit double precision floating point values. The Itanium processor does not support parallel
double precision computation, so Pentium 4 processor Streaming SIMD Extensions 2 are not
implemented on Itanium-based systems.

For more details, refer to the Pentium® 4 processor Streaming SIMD Extensions 2 External Architecture
Specification (EAS) and other Pentium 4 processor manuals available for download from the
developer.intel.com web site. You should be familiar with the hardware features provided by the
Streaming SIMD Extensions 2 when writing programs with the intrinsics. The following are three important
issues to keep in mind:

! Certain intrinsics, such as _mm_loadr_pd and _mm_cmpgt_sd, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

! Data loaded or stored as __m128d objects must be generally 16-byte-aligned.

! Some intrinsics require that their argument be immediates, that is, constant integers (literals), due
to the nature of the instruction.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

 179

Floating Point Intrinsics

Floating-point Arithmetic Operations for Streaming SIMD Extensions
2
The arithmetic operations for the Streaming SIMD Extensions 2 are listed in the following table and are
followed by descriptions of each intrinsic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Operation R0
Value

R1
 Value

_mm_add_sd ADDSD Addition a0 [op] b0 a1

_mm_add_pd ADDPD Addition a0 [op] b0 a1 [op] b1

_mm_sub_sd SUBSD Subtraction a0 [op] b0 a1

_mm_sub_pd SUBPD Subtraction a0 [op] b0 a1 [op] b1

_mm_mul_sd MULSD Multiplication a0 [op] b0 a1

_mm_mul_pd MULPD Multiplication a0 [op] b0 a1 [op] b1

_mm_div_sd DIVSD Division a0 [op] b0 a1

_mm_div_pd DIVPD Division a0 [op] b0 a1 [op] b1

_mm_sqrt_sd SQRTSD Computes Square Root a0 [op] b0 a1

_mm_sqrt_pd SQRTPD Computes Square Root a0 [op] b0 a1 [op] b1

_mm_min_sd MINSD Computes Minimum a0 [op] b0 a1

_mm_min_pd MINPD Computes Minimum a0 [op] b0 a1 [op] b1

_mm_max_sd MAXSD Computes Maximum a0 [op] b0 a1

_mm_max_pd MAXPD Computes Maximum a0 [op] b0 a1 [op] b1

 180

__m128d _mm_add_sd(__m128d a, __m128d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper DP FP value
is passed through from a.

r0 := a0 + b0
r1 := a1

__m128d _mm_add_pd(__m128d a, __m128d b)

Adds the two DP FP values of a and b.

r0 := a0 + b0
r1 := a1 + b1

__m128d _mm_sub_sd(__m128d a, __m128d b)

Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.

r0 := a0 - b0
r1 := a1

__m128d _mm_sub_pd(__m128d a, __m128d b)

Subtracts the two DP FP values of b from a.

r0 := a0 - b0
r1 := a1 - b1

__m128d _mm_mul_sd(__m128d a, __m128d b)

Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from a.

r0 := a0 * b0
r1 := a1

__m128d _mm_mul_pd(__m128d a, __m128d b)

Multiplies the two DP FP values of a and b.

r0 := a0 * b0
r1 := a1 * b1

__m128d _mm_div_sd(__m128d a, __m128d b)

Divides the lower DP FP values of a and b. The upper DP FP value is passed through from a.

r0 := a0 / b0
r1 := a1

__m128d _mm_div_pd(__m128d a, __m128d b)

Divides the two DP FP values of a and b.

r0 := a0 / b0
r1 := a1 / b1

 181

__m128d _mm_sqrt_sd(__m128d a, __m128d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is passed
through from a.

r0 := sqrt(b0)
r1 := a1

 182

__m128d _mm_sqrt_pd(__m128d a)

Computes the square roots of the two DP FP values of a.

r0 := sqrt(a0)
r1 := sqrt(a1)

__m128d _mm_min_sd(__m128d a, __m128d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is passed
through from a.

r0 := min (a0, b0)
r1 := a1

__m128d _mm_min_pd(__m128d a, __m128d b)

Computes the minima of the two DP FP values of a and b.

r0 := min(a0, b0)
r1 := min(a1, b1)

__m128d _mm_max_sd(__m128d a, __m128d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value is passed
through from a.

r0 := max (a0, b0)
r1 := a1

__m128d _mm_max_pd(__m128d a, __m128d b)

Computes the maxima of the two DP FP values of a and b.

r0 := max(a0, b0)
r1 := max(a1, b1)

 183

Logical Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_and_pd(__m128d a, __m128d b)

(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.

r0 := a0 & b0
r1 := a1 & b1

__m128d _mm_andnot_pd(__m128d a, __m128d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-
bit value in a.

r0 := (~a0) & b0
r1 := (~a1) & b1

__m128d _mm_or_pd(__m128d a, __m128d b)

(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.

r0 := a0 | b0
r1 := a1 | b1

__m128d _mm_xor_pd(__m128d a, __m128d b)

(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.

r0 := a0 ^ b0
r1 := a1 ^ b1

 184

Comparison Operations for Streaming SIMD Extensions 2
Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP FP values of
a and b are compared, and a 64-bit mask is returned; the upper DP FP value is passed through from a.
The mask is set to 0xffffffffffffffff for each element where the comparison is true and 0x0
where the comparison is false. The r following the instruction name indicates that the operands to the
instruction are reversed in the actual implementation. The comparison intrinsics for the Streaming SIMD
Extensions 2 are listed in the following table followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Compare
 For:

_mm_cmpeq_pd CMPEQPD Equality

_mm_cmplt_pd CMPLTPD Less Than

_mm_cmple_pd CMPLEPD Less Than or Equal

_mm_cmpgt_pd CMPLTPDr Greater Than

_mm_cmpge_pd CMPLEPDr Greater Than or Equal

_mm_cmpord_pd CMPORDPD Ordered

_mm_cmpunord_pd CMPUNORDPD Unordered

_mm_cmpneq_pd CMPNEQPD Inequality

_mm_cmpnlt_pd CMPNLTPD Not Less Than

_mm_cmpnle_pd CMPNLEPD Not Less Than or Equal

_mm_cmpngt_pd CMPNLTPDr Not Greater Than

_mm_cmpnge_pd CMPLEPDr Not Greater Than or Equal

_mm_cmpeq_sd CMPEQSD Equality

_mm_cmplt_sd CMPLTSD Less Than

_mm_cmple_sd CMPLESD Less Than or Equal

_mm_cmpgt_sd CMPLTSDr Greater Than

_mm_cmpge_sd CMPLESDr Greater Than or Equal

_mm_cmpord_sd CMPORDSD Ordered

_mm_cmpunord_sd CMPUNORDSD Unordered

 185

Intrinsic
Name

Corresponding
Instruction

Compare
 For:

_mm_cmpneq_sd CMPNEQSD Inequality

_mm_cmpnlt_sd CMPNLTSD Not Less Than

_mm_cmpnle_sd CMPNLESD Not Less Than or Equal

_mm_cmpngt_sd CMPNLTSDr Not Greater Than

_mm_cmpnge_sd CMPNLESDR Not Greater Than or Equal

_mm_comieq_sd COMISD Equality

_mm_comilt_sd COMISD Less Than

_mm_comile_sd COMISD Less Than or Equal

_mm_comigt_sd COMISD Greater Than

_mm_comige_sd COMISD Greater Than or Equal

_mm_comineq_sd COMISD Not Equal

_mm_ucomieq_sd UCOMISD Equality

_mm_ucomilt_sd UCOMISD Less Than

_mm_ucomile_sd UCOMISD Less Than or Equal

_mm_ucomigt_sd UCOMISD Greater Than

_mm_ucomige_sd UCOMISD Greater Than or Equal

_mm_ucomineq_sd UCOMISD Not Equal

 186

__m128d _mm_cmpeq_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for equality.

r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmplt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than b.

r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 < b1) ? 0xffffffffffffffff : 0x0

___m128d _mm_cmple_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a less than or equal to b.

r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpgt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than b.

r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a greater than or equal to b.

r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 >= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for ordered.

r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 ord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpunord_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for unordered.

r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 unord b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpneq_pd (__m128d a, __m128d b)

Compares the two DP FP values of a and b for inequality.

r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0
r1 := (a1 != b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than b.

r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 < b1) ? 0xffffffffffffffff : 0x0

 187

__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not less than or equal to b.

r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 <= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpngt_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than b.

r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 > b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpnge_pd(__m128d a, __m128d b)

Compares the two DP FP values of a and b for a not greater than or equal to b.

r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := !(a1 >= b1) ? 0xffffffffffffffff : 0x0

__m128d _mm_cmpeq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is passed
through from a.

r0 := (a0 == b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmplt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value is passed
through from a.

r0 := (a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := i1

__m128d _mm_cmple_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP value
is passed through from a.

r0 := (a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpgt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is
passed through from a.

r0 := (a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP
value is passed through from a.

r0 := (a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

 188

__m128d _mm_cmpord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed
through from a.

r0 := (a0 ord b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpunord_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is passed
through from a.

r0 := (a0 unord b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpneq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed
through from a.

r0 := (a0 != b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnlt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is
passed through from a.

r0 := !(a0 < b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnle_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP
value is passed through from a.

r0 := !(a0 <= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpngt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is
passed through from a.

r0 := !(a0 > b0) ? 0xffffffffffffffff : 0x0
r1 := a1

__m128d _mm_cmpnge_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP FP
value is passed through from a.

r0 := !(a0 >= b0) ? 0xffffffffffffffff : 0x0
r1 := a1

 189

int _mm_comieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_comilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

int _mm_comile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_comigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1
is returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

int _mm_comige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

int _mm_comineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

int _mm_ucomieq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? 0x1 : 0x0

int _mm_ucomilt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? 0x1 : 0x0

 190

int _mm_ucomile_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? 0x1 : 0x0

int _mm_ucomigt_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1
is returned. Otherwise 0 is returned.

r := (a0 > b0) ? 0x1 : 0x0

int _mm_ucomige_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? 0x1 : 0x0

int _mm_ucomineq_sd(__m128d a, __m128d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 != b0) ? 0x1 : 0x0

 191

Conversion Operations for Streaming SIMD Extensions 2
Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as _mm_cvtpd_ps result in a loss of precision. The rounding mode used in such cases
is determined by the value in the MXCSR register. The default rounding mode is round-to-nearest. Note
that the rounding mode used by the C and C++ languages when performing a type conversion is to
truncate. The _mm_cvttpd_epi32 and _mm_cvttsd_si32 intrinsics use the truncate rounding mode
regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 are listed in the following table
followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic
Name

Corresponding
Instruction

Return
Type

Parameters

_mm_cvtpd_ps CVTPD2PS __m128 (__m128d a)

_mm_cvtps_pd CVTPS2PD __m128d (__m128 a)

_mm_cvtepi32_pd CVTDQ2PD __m128d (__m128i a)

_mm_cvtpd_epi32 CVTPD2DQ __m128i (__m128d a)

_mm_cvtsd_si32 CVTSD2SI int (__m128d a)

_mm_cvtsd_ss CVTSD2SS __m128 (__m128 a, __m128d
b)

_mm_cvtsi32_sd CVTSI2SD __m128d (__m128d a, int b)

_mm_cvtss_sd CVTSS2SD __m128d (__m128d a, __m128
b)

_mm_cvttpd_epi32 CVTTPD2DQ __m128i (__m128d a)

_mm_cvttsd_si32 CVTTSD2SI int (__m128d a)

_mm_cvtpd_pi32 CVTPD2PI __m64 (__m128d a)

_mm_cvttpd_pi32 CVTTPD2PI __m64 (__m128d a)

_mm_cvtpi32_pd CVTPI2PD __m128d (__m64 a)

 192

__m128 _mm_cvtpd_ps(__m128d a)

Converts the two DP FP values of a to SP FP values.

r0 := (float) a0
r1 := (float) a1
r2 := 0.0 ; r3 := 0.0

__m128d _mm_cvtps_pd(__m128 a)

Converts the lower two SP FP values of a to DP FP values.

r0 := (double) a0
r1 := (double) a1

__m128d _mm_cvtepi32_pd(__m128i a)

Converts the lower two signed 32-bit integer values of a to DP FP values.

r0 := (double) a0
r1 := (double) a1

__m128i _mm_cvtpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

r0 := (int) a0
r1 := (int) a1
r2 := 0x0 ; r3 := 0x0

int _mm_cvtsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer value.

r := (int) a0

__m128 _mm_cvtsd_ss(__m128 a, __m128d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are passed
through.

r0 := (float) b0
r1 := a1; r2 := a2 ; r3 := a3

__m128d _mm_cvtsi32_sd(__m128d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed
through.

r0 := (double) b
r1 := a1

__m128d _mm_cvtss_sd(__m128d a, __m128 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is
passed through.

r0 := (double) b0
r1 := a1

 193

__m128i _mm_cvttpd_epi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

r0 := (int) a0
r1 := (int) a1
r2 := 0x0 ; r3 := 0x0

int _mm_cvttsd_si32(__m128d a)

Converts the lower DP FP value of a to a 32-bit signed integer using truncate.

r := (int) a0

__m64 _mm_cvtpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values.

r0 := (int) a0
r1 := (int) a1

__m64 _mm_cvttpd_pi32(__m128d a)

Converts the two DP FP values of a to 32-bit signed integer values using truncate.

r0 := (int) a0
r1 := (int) a1

__m128d _mm_cvtpi32_pd(__m64 a)

Converts the two 32-bit signed integer values of a to DP FP values.

r0 := (double) a0
r1 := (double) a1

 194

Floating-point Memory and Initialization Operations

Streaming SIMD Extensions 2 Floating-point Memory and Initialization
Operations
This section describes the load, set, and store operations, which let you load and store data into
memory. The load and set operations are similar in that both initialize __m128d data. However, the set
operations take a double argument and are intended for initialization with constants, while the load
operations take a double pointer argument and are intended to mimic the instructions for loading data
from memory. The store operation assigns the initialized data to the address.

Note

There is no intrinsic for move operations. To move data from one register to another, a simple
assignment, A = B, suffices, where A and B are the source and target registers for the move operation.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Load Operations for Streaming SIMD Extensions 2
The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_load_pd(double const*dp)

(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte aligned.

r0 := p[0]
r1 := p[1]

__m128d _mm_load1_pd(double const*dp)

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both elements. The address p
need not be 16-byte aligned.

r0 := *p
r1 := *p

__m128d _mm_loadr_pd(double const*dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The address p must be 16-
byte aligned.

r0 := p[1]
r1 := p[0]

__m128d _mm_loadu_pd(double const*dp)

(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte aligned.

r0 := p[0]
r1 := p[1]

 195

__m128d _mm_load_sd(double const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address p need not be
16-byte aligned.

r0 := *p
r1 := 0.0

__m128d _mm_loadh_pd(__m128d a, double const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result. The lower DP FP
value is passed through from a. The address p need not be 16-byte aligned.

r0 := a0
r1 := *p

__m128d _mm_loadl_pd(__m128d a, double const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result. The upper DP FP
value is passed through from a. The address p need not be 16-byte aligned.

r0 := *p
r1 := a1

Set Operations for Streaming SIMD Extensions 2
The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_set_sd(double w)

(composite) Sets the lower DP FP value to w and sets the upper DP FP value to zero.

r0 := w
r1 := 0.0

__m128d _mm_set1_pd(double w)

(composite) Sets the 2 DP FP values to w.

r0 := w
r1 := w

__m128d _mm_set_pd(double w, double x)

(composite) Sets the lower DP FP value to x and sets the upper DP FP value to w.

r0 := x
r1 := w

__m128d _mm_setr_pd(double w, double x)

(composite) Sets the lower DP FP value to w and sets the upper DP FP value to x.

r0 := w
r1 := x

 196

__m128d _mm_setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.

r0 := 0.0
r1 := 0.0

__m128d _mm_move_sd(__m128d a, __m128d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is
passed through from a.

r0 := b0
r1 := a1

Store Operations for Streaming SIMD Extensions 2
The following store operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

void _mm_store_sd(double *dp, __m128d a)

(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.

*dp := a0

void _mm_store1_pd(double *dp, __m128d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The address dp must be 16-
byte aligned.

dp[0] := a0
dp[1] := a0

void _mm_store_pd(double *dp, __m128d a)

(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte aligned.

dp[0] := a0
dp[1] := a1

void _mm_storeu_pd(double *dp, __m128d a)

(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte aligned.

dp[0] := a0
dp[1] := a1

void _mm_storer_pd(double *dp, __m128d a)

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The address dp must be 16-
byte aligned.

dp[0] := a1
dp[1] := a0

 197

void _mm_storeh_pd(double *dp, __m128d a)

(uses MOVHPD) Stores the upper DP FP value of a.

*dp := a1

void _mm_storel_pd(double *dp, __m128d a)

(uses MOVLPD) Stores the lower DP FP value of a.

*dp := a0

Miscellaneous Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128d _mm_unpackhi_pd(__m128d a, __m128d b)

(uses UNPCKHPD) Interleaves the upper DP FP values of a and b.

r0 := a1
r1 := b1

__m128d _mm_unpacklo_pd(__m128d a, __m128d b)

(uses UNPCKLPD) Interleaves the lower DP FP values of a and b.

r0 := a0
r1 := b0

int _mm_movemask_pd(__m128d a)

(uses MOVMSKPD) Creates a two-bit mask from the sign bits of the two DP FP values of a.

r := sign(a1) << 1 | sign(a0)

__m128d _mm_shuffle_pd(__m128d a, __m128d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the mask i. The mask
must be an immediate. See Macro Function for Shuffle for a description of the shuffle semantics.

 198

Integer Intrinsics

Integer Arithmetic Operations for Streaming SIMD Extensions 2
The integer arithmetic operations for Streaming SIMD Extensions 2 are listed in the following table
followed by their descriptions. The packed arithmetic intrinsics for Streaming SIMD Extensions 2 are listed
in the Floating-point Arithmetic Operations topic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Instruction Operation

_mm_add_epi8 PADDB Addition

_mm_add_epi16 PADDW Addition

_mm_add_epi32 PADDD Addition

_mm_add_si64 PADDQ Addition

_mm_add_epi64 PADDQ Addition

_mm_adds_epi8 PADDSB Addition

_mm_adds_epi16 PADDSW Addition

_mm_adds_epu8 PADDUSB Addition

_mm_adds_epu16 PADDUSW Addition

_mm_avg_epu8 PAVGB Computes Average

_mm_avg_epu16 PAVGW Computes Average

_mm_madd_epi16 PMADDWD Multiplication/Addition

_mm_max_epi16 PMAXSW Computes Maxima

_mm_max_epu8 PMAXUB Computes Maxima

_mm_min_epi16 PMINSW Computes Minima

_mm_min_epu8 PMINUB Computes Minima

_mm_mulhi_epi16 PMULHW Multiplication

_mm_mulhi_epu16 PMULHUW Multiplication

_mm_mullo_epi16 PMULLW Multiplication

_mm_mul_su32 PMULUDQ Multiplication

 199

Intrinsic Instruction Operation

_mm_mul_epu32 PMULUDQ Multiplication

_mm_sad_epu8 PSADBW Computes
Difference/Adds

_mm_sub_epi8 PSUBB Subtraction

_mm_sub_epi16 PSUBW Subtraction

_mm_sub_epi32 PSUBD Subtraction

_mm_sub_si64 PSUBQ Subtraction

_mm_sub_epi64 PSUBQ Subtraction

_mm_subs_epi8 PSUBSB Subtraction

_mm_subs_epi16 PSUBSW Subtraction

_mm_subs_epu8 PSUBUSB Subtraction

_mm_subs_epu16 PSUBUSW Subtraction

__mm128i _mm_add_epi8(__m128i a, __m128i b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in b.

r0 := a0 + b0
r1 := a1 + b1
...
r15 := a15 + b15

__mm128i _mm_add_epi16(__m128i a, __m128i b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b.

r0 := a0 + b0
r1 := a1 + b1
...
r7 := a7 + b7

__m128i _mm_add_epi32(__m128i a, __m128i b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b.

r0 := a0 + b0
r1 := a1 + b1
r2 := a2 + b2
r3 := a3 + b3

 200

__m64 _mm_add_si64(__m64 a, __m64 b)

Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.

r := a + b

__m128i _mm_add_epi64(__m128i a, __m128i b)

Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit integers in b.

r0 := a0 + b0
r1 := a1 + b1

__m128i _mm_adds_epi8(__m128i a, __m128i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating
arithmetic.

r0 := SignedSaturate(a0 + b0)
r1 := SignedSaturate(a1 + b1)
...
r15 := SignedSaturate(a15 + b15)

__m128i _mm_adds_epi16(__m128i a, __m128i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using saturating
arithmetic.

r0 := SignedSaturate(a0 + b0)
r1 := SignedSaturate(a1 + b1)
...
r7 := SignedSaturate(a7 + b7)

__m128i _mm_adds_epu8(__m128i a, __m128i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating
arithmetic.

r0 := UnsignedSaturate(a0 + b0)
r1 := UnsignedSaturate(a1 + b1)
...
r15 := UnsignedSaturate(a15 + b15)

__m128i _mm_adds_epu16(__m128i a, __m128i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using saturating
arithmetic.

r0 := UnsignedSaturate(a0 + b0)
r1 := UnsignedSaturate(a1 + b1)
...
r15 := UnsignedSaturate(a7 + b7)

__m128i _mm_avg_epu8(__m128i a, __m128i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers in
b and rounds.

r0 := (a0 + b0) / 2
r1 := (a1 + b1) / 2
...
r15 := (a15 + b15) / 2

 201

__m128i _mm_avg_epu16(__m128i a, __m128i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in
b and rounds.

r0 := (a0 + b0) / 2
r1 := (a1 + b1) / 2
...
r7 := (a7 + b7) / 2

__m128i _mm_madd_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Adds the
signed 32-bit integer results pairwise and packs the 4 signed 32-bit integer results.

r0 := (a0 * b0) + (a1 * b1)
r1 := (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (a5 * b5)
r3 := (a6 * b6) + (a7 * b7)

__m128i _mm_max_epi16(__m128i a, __m128i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 signed 16-bit
integers from b.

r0 := max(a0, b0)
r1 := max(a1, b1)
...
r7 := max(a7, b7)

__m128i _mm_max_epu8(__m128i a, __m128i b)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b.

r0 := max(a0, b0)
r1 := max(a1, b1)
...
r15 := max(a15, b15)

__m128i _mm_min_epi16(__m128i a, __m128i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit
integers from b.

r0 := min(a0, b0)
r1 := min(a1, b1)
...
r7 := min(a7, b7)

__m128i _mm_min_epu8(__m128i a, __m128i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b.

r0 := min(a0, b0)
r1 := min(a1, b1)
...
r15 := min(a15, b15)

 202

__m128i _mm_mulhi_epi16(__m128i a, __m128i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Packs the
upper 16-bits of the 8 signed 32-bit results.

r0 := (a0 * b0)[31:16]
r1 := (a1 * b1)[31:16]
...
r7 := (a7 * b7)[31:16]

__m128i _mm_mulhi_epu16(__m128i a, __m128i b)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers from b. Packs the
upper 16-bits of the 8 unsigned 32-bit results.

r0 := (a0 * b0)[31:16]
r1 := (a1 * b1)[31:16]
...
r7 := (a7 * b7)[31:16]

__m128i_mm_mullo_epi16(__m128i a, __m128i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit
integers from b. Packs the lower 16-bits of the 8 signed or unsigned 32-bit results.

r0 := (a0 * b0)[15:0]
r1 := (a1 * b1)[15:0]
...
r7 := (a7 * b7)[15:0]

__m64 _mm_mul_su32(__m64 a, __m64 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-bit
integer result.

r := a0 * b0

__m128i _mm_mul_epu32(__m128i a, __m128i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b. Packs the 2
unsigned 64-bit integer results.

r0 := a0 * b0
r1 := a2 * b2

__m128i _mm_sad_epu8(__m128i a, __m128i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-
bit integers from b. Sums the upper 8 differences and lower 8 differences, and packs the resulting
2 unsigned 16-bit integers into the upper and lower 64-bit elements.

r0 := abs(a0 - b0) + abs(a1 - b1) +...+ abs(a7 - b7)
r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0
r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(a15 - b15)
r5 := 0x0 ; r6 := 0x0 ; r7 := 0x0

 203

__m128i _mm_sub_epi8(__m128i a, __m128i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit
integers of a.

r0 := a0 - b0
r1 := a1 - b1
...
r15 := a15 - b15

__m128i_mm_sub_epi16(__m128i a, __m128i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or unsigned 16-bit
integers of a.

r0 := a0 - b0
r1 := a1 - b1
...
r7 := a7 - b7

__m128i _mm_sub_epi32(__m128i a, __m128i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit
integers of a.

r0 := a0 - b0
r1 := a1 - b1
r2 := a2 - b2
r3 := a3 - b3

__m64 _mm_sub_si64 (__m64 a, __m64 b)

Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.

r := a - b

__m128i _mm_sub_epi64(__m128i a, __m128i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or unsigned 64-bit
integers in a.

r0 := a0 - b0
r1 := a1 - b1

__m128i _mm_subs_epi8(__m128i a, __m128i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using saturating
arithmetic.

r0 := SignedSaturate(a0 - b0)
r1 := SignedSaturate(a1 - b1)
...
r15 := SignedSaturate(a15 - b15)

 204

__m128i _mm_subs_epi16(__m128i a, __m128i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a using saturating
arithmetic.

r0 := SignedSaturate(a0 - b0)
r1 := SignedSaturate(a1 - b1)
...
r7 := SignedSaturate(a7 - b7)

__m128i _mm_subs_epu8(__m128i a, __m128i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using
saturating arithmetic.

r0 := UnsignedSaturate(a0 - b0)
r1 := UnsignedSaturate(a1 - b1)
...
r15 := UnsignedSaturate(a15 - b15)

__m128i _mm_subs_epu16(__m128i a, __m128i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a using
saturating arithmetic.

r0 := UnsignedSaturate(a0 - b0)
r1 := UnsignedSaturate(a1 - b1)
...
r7 := UnsignedSaturate(a7 - b7)

 205

Integer Logical Operations for Streaming SIMD Extensions 2
The following four logical-operation intrinsics and their respective instructions are functional as part of
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_and_si128(__m128i a, __m128i b)

(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.

r := a & b

__m128i _mm_andnot_si128(__m128i a, __m128i b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-
bit value in a.

r := (~a) & b

__m128i _mm_or_si128(__m128i a, __m128i b)

(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.

r := a | b

__m128i _mm_xor_si128(__m128i a, __m128i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

r := a ^ b

Integer Shift Operations for Streaming SIMD Extensions 2
The shift-operation intrinsics for Streaming SIMD Extensions 2 and the description for each are listed in
the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Shift
Direction

Shift
Type

Corresponding
Instruction

_mm_slli_si128 Left Logical PSLLDQ

_mm_slli_epi16 Left Logical PSLLW

_mm_sll_epi16 Left Logical PSLLW

_mm_slli_epi32 Left Logical PSLLD

_mm_sll_epi32 Left Logical PSLLD

_mm_slli_epi64 Left Logical PSLLQ

_mm_sll_epi64 Left Logical PSLLQ

_mm_srai_epi16 Right Arithmetic PSRAW

 206

Intrinsic Shift
Direction

Shift
Type

Corresponding
Instruction

_mm_sra_epi16 Right Arithmetic PSRAW

_mm_srai_epi32 Right Arithmetic PSRAD

_mm_sra_epi32 Right Arithmetic PSRAD

_mm_srli_si128 Right Logical PSRLDQ

_mm_srli_epi16 Right Logical PSRLW

_mm_srl_epi16 Right Logical PSRLW

_mm_srli_epi32 Right Logical PSRLD

_mm_srl_epi32 Right Logical PSRLD

_mm_srli_epi64 Right Logical PSRLQ

_mm_srl_epi64 Right Logical PSRLQ

__m128i _mm_slli_si128(__m128i a, int imm)

Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate.

r := a << (imm * 8)

__m128i _mm_slli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
r1 := a1 << count
...
r7 := a7 << count

__m128i _mm_sll_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
r1 := a1 << count
...
r7 := a7 << count

__m128i _mm_slli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
r1 := a1 << count
r2 := a2 << count
r3 := a3 << count

 207

__m128i _mm_sll_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
r1 := a1 << count
r2 := a2 << count
r3 := a3 << count

__m128i _mm_slli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
r1 := a1 << count

__m128i _mm_sll_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

r0 := a0 << count
r1 := a1 << count

__m128i _mm_srai_epi16(__m128i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count

__m128i _mm_sra_epi16(__m128i a, __m128i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count
r1 := a1 >> count
...
r7 := a7 >> count

__m128i _mm_srai_epi32(__m128i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count
r1 := a1 >> count
r2 := a2 >> count
r3 := a3 >> count

__m128i _mm_sra_epi32(__m128i a, __m128i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

r0 := a0 >> count
r1 := a1 >> count
r2 := a2 >> count
r3 := i3 >> count

 208

__m128i _mm_srli_si128(__m128i a, int imm)

Shifts the 128-bit value in a right by imm bytes while shifting in zeros. imm must be an immediate.

r := srl(a, imm*8)

__m128i _mm_srli_epi16(__m128i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)
r1 := srl(a1, count)
...
r7 := srl(a7, count)

__m128i _mm_srl_epi16(__m128i a, __m128i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)
r1 := srl(a1, count)
...
r7 := srl(a7, count)

__m128i _mm_srli_epi32(__m128i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)
r1 := srl(a1, count)
r2 := srl(a2, count)
r3 := srl(a3, count)

__m128i _mm_srl_epi32(__m128i a, __m128i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)
r1 := srl(a1, count)
r2 := srl(a2, count)
r3 := srl(a3, count)

__m128i _mm_srli_epi64(__m128i a, int count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)
r1 := srl(a1, count)

__m128i _mm_srl_epi64(__m128i a, __m128i count)

Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

r0 := srl(a0, count)
r1 := srl(a1, count)

 209

Integer Comparison Operations for Streaming SIMD Extensions 2
The comparison intrinsics for Streaming SIMD Extensions 2 and descriptions for each are listed in the
following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Name Instruction Comparison Elements Size of
Elements

_mm_cmpeq_epi8 PCMPEQB Equality 16 8

_mm_cmpeq_epi16 PCMPEQW Equality 8 16

_mm_cmpeq_epi32 PCMPEQD Equality 4 32

_mm_cmpgt_epi8 PCMPGTB Greater Than 16 8

_mm_cmpgt_epi16 PCMPGTW Greater Than 8 16

_mm_cmpgt_epi32 PCMPGTD Greater Than 4 32

_mm_cmplt_epi8 PCMPGTBr Less Than 16 8

_mm_cmplt_epi16 PCMPGTWr Less Than 8 16

_mm_cmplt_epi32 PCMPGTDr Less Than 4 32

__m128i _mm_cmpeq_epi8(__m128i a, __m128i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit
integers in b for equality.

r0 := (a0 == b0) ? 0xff : 0x0
r1 := (a1 == b1) ? 0xff : 0x0
...
r15 := (a15 == b15) ? 0xff : 0x0

__m128i _mm_cmpeq_epi16(__m128i a, __m128i b)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit
integers in b for equality.

r0 := (a0 == b0) ? 0xffff : 0x0
r1 := (a1 == b1) ? 0xffff : 0x0
...
r7 := (a7 == b7) ? 0xffff : 0x0

__m128i _mm_cmpeq_epi32(__m128i a, __m128i b)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned 32-bit
integers in b for equality.

r0 := (a0 == b0) ? 0xffffffff : 0x0
r1 := (a1 == b1) ? 0xffffffff : 0x0
r2 := (a2 == b2) ? 0xffffffff : 0x0
r3 := (a3 == b3) ? 0xffffffff : 0x0

 210

__m128i _mm_cmpgt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for greater than.

r0 := (a0 > b0) ? 0xff : 0x0
r1 := (a1 > b1) ? 0xff : 0x0
...
r15 := (a15 > b15) ? 0xff : 0x0

__m128i _mm_cmpgt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than.

r0 := (a0 > b0) ? 0xffff : 0x0
r1 := (a1 > b1) ? 0xffff : 0x0
...
r7 := (a7 > b7) ? 0xffff : 0x0

__m128i _mm_cmpgt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than.

r0 := (a0 > b0) ? 0xffff : 0x0
r1 := (a1 > b1) ? 0xffff : 0x0
r2 := (a2 > b2) ? 0xffff : 0x0
r3 := (a3 > b3) ? 0xffff : 0x0

__m128i _mm_cmplt_epi8(__m128i a, __m128i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for less than.

r0 := (a0 < b0) ? 0xff : 0x0
r1 := (a1 < b1) ? 0xff : 0x0
...
r15 := (a15 < b15) ? 0xff : 0x0

__m128i _mm_cmplt_epi16(__m128i a, __m128i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.

r0 := (a0 < b0) ? 0xffff : 0x0
r1 := (a1 < b1) ? 0xffff : 0x0
...
r7 := (a7 < b7) ? 0xffff : 0x0

__m128i _mm_cmplt_epi32(__m128i a, __m128i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than.

r0 := (a0 < b0) ? 0xffff : 0x0
r1 := (a1 < b1) ? 0xffff : 0x0
r2 := (a2 < b2) ? 0xffff : 0x0
r3 := (a3 < b3) ? 0xffff : 0x0

 211

Conversion Operations for Streaming SIMD Extensions 2
The following two conversion intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_cvtsi32_si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an __m128i object. Copies
the sign bit of a into the upper 96 bits of the __m128i object.

r0 := a
r1 := 0x0 ; r2 := 0x0 ; r3 := 0x0

int _mm_cvtsi128_si32(__m128i a)

(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.

r := a0

__m128 _mm_cvtepi32_ps(__m128i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

r0 := (float) a0
r1 := (float) a1
r2 := (float) a2
r3 := (float) a3

__m128i _mm_cvtps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

r0 := (int) a0
r1 := (int) a1
r2 := (int) a2
r3 := (int) a3

__m128i _mm_cvttps_epi32(__m128 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

r0 := (int) a0
r1 := (int) a1
r2 := (int) a2
r3 := (int) a3

 212

Macro Function for Shuffle
The Streaming SIMD Extensions 2 provide a macro function to help create constants that describe shuffle
operations. The macro takes two small integers (in the range of 0 to 1) and combines them into an 2-bit
immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

You can view the two integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

Cacheability Support Operations for Streaming SIMD Extensions 2
The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

void _mm_stream_pd(double *p, __m128d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches. The address p
must be 16-byte aligned. If the cache line containing address p is already in the cache, the cache
will be updated.

p[0] := a0
p[1] := a1

void _mm_stream_si128(__m128i *p, __m128i a)

Stores the data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated. Address p must be 16-byte aligned.

*p := a

void _mm_stream_si32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated.

*p := a

 213

void _mm_clflush(void const*p)

Cache line containing p is flushed and invalidated from all caches in the coherency domain.

void _mm_lfence(void)

Guarantees that every load instruction that precedes, in program order, the load fence instruction is
globally visible before any load instruction which follows the fence in program order.

void _mm_mfence(void)

Guarantees that every memory access that precedes, in program order, the memory fence
instruction is globally visible before any memory instruction which follows the fence in program
order.

void _mm_pause(void)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin_loop:pause

cmp eax, A

jne spin_loop

In the above example, the program spins until memory location A matches the value in register eax. The
code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the
attempt to get a lock has failed.

get_lock: mov eax, 1

xchg eax, A ; Try to get lock

cmp eax, 0 ; Test if successful

jne spin_loop

<critical_section code>

mov A, 0 ; Release lock

jmp continue

spin_loop: pause ; Spin-loop hint

cmp 0, A ; Check lock availability

jne spin_loop

 214

jmp get_lock

continue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing IA-32 processor generations, a test for processor
type (a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors
which use the PAUSE as a hint there can be significant performance benefit.

Miscellaneous Operations for Streaming SIMD Extensions 2
The miscellaneous intrinsics for Streaming SIMD Extensions 2 are listed in the following table followed by
their descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

Intrinsic Corresponding
Instruction

Operation

_mm_packs_epi16 PACKSSWB Packed Saturation

_mm_packs_epi32 PACKSSDW Packed Saturation

_mm_packus_epi16 PACKUSWB Packed Saturation

_mm_extract_epi16 PEXTRW Extraction

_mm_insert_epi16 PINSRW Insertion

_mm_movemask_epi8 PMOVMSKB Mask Creation

_mm_shuffle_epi32 PSHUFD Shuffle

_mm_shufflehi_epi16 PSHUFHW Shuffle

_mm_shufflelo_epi16 PSHUFLW Shuffle

_mm_unpackhi_epi8 PUNPCKHBW Interleave

_mm_unpackhi_epi16 PUNPCKHWD Interleave

_mm_unpackhi_epi32 PUNPCKHDQ Interleave

_mm_unpackhi_epi64 PUNPCKHQDQ Interleave

_mm_unpacklo_epi8 PUNPCKLBW Interleave

_mm_unpacklo_epi16 PUNPCKLWD Interleave

_mm_unpacklo_epi32 PUNPCKLDQ Interleave

_mm_unpacklo_epi64 PUNPCKLQDQ Interleave

_mm_movepi64_pi64 MOVDQ2Q move

 215

Intrinsic Corresponding
Instruction

Operation

_m128i_mm_movpi64_epi64 MOVQ2DQ move

_mm_move_epi64 MOVQ move

__m128i _mm_packs_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

r0 := SignedSaturate(a0)
r1 := SignedSaturate(a1)
...
r7 := SignedSaturate(a7)
r8 := SignedSaturate(b0)
r9 := SignedSaturate(b1)
...
r15 := SignedSaturate(b7)

__m128i _mm_packs_epi32(__m128i a, __m128i b)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates.

r0 := SignedSaturate(a0)
r1 := SignedSaturate(a1)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(b1)
r6 := SignedSaturate(b2)
r7 := SignedSaturate(b3)

__m128i _mm_packus_epi16(__m128i a, __m128i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.

r0 := UnsignedSaturate(a0)
r1 := UnsignedSaturate(a1)
...
r7 := UnsignedSaturate(a7)
r8 := UnsignedSaturate(b0)
r9 := UnsignedSaturate(b1)
...
r15 := UnsignedSaturate(b7)

int _mm_extract_epi16(__m128i a, int imm)

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector imm
must be an immediate.

r := (imm == 0) ? a0 :
((imm == 1) ? a1 :
...
(imm == 7) ? a7)

 216

__m128i _mm_insert_epi16(__m128i a, int b, int imm)

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector imm must
be an immediate.

r0 := (imm == 0) ? b : a0;
r1 := (imm == 1) ? b : a1;
...
r7 := (imm == 7) ? b : a7;

int _mm_movemask_epi8(__m128i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a
and zero extends the upper bits.

r := a15[7] << 15 |
a14[7] << 14 |
...
a1[7] << 1 |
a0[7]

__m128i _mm_shuffle_epi32(__m128i a, int imm)

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. The shuffle value, imm,
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_shufflehi_epi16(__m128i a, int imm)

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by imm. The shuffle value,
imm, must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_shufflelo_epi16(__m128i a, int imm)

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by imm. The shuffle value,
imm, must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

__m128i _mm_unpackhi_epi8(__m128i a, __m128i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned
8-bit integers in b.

r0 := a8 ; r1 := b8
r2 := a9 ; r3 := b9
...
r14 := a15 ; r15 := b15

__m128i _mm_unpackhi_epi16(__m128i a, __m128i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned
16-bit integers in b.

r0 := a4 ; r1 := b4
r2 := a5 ; r3 := b5
r4 := a6 ; r5 := b6
r6 := a7 ; r7 := b7

 217

__m128i _mm_unpackhi_epi32(__m128i a, __m128i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned
32-bit integers in b.

r0 := a2 ; r1 := b2
r2 := a3 ; r3 := b3

__m128i _mm_unpackhi_epi64(__m128i a, __m128i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned 64-
bit integer in b.

r0 := a1 ; r1 := b1

__m128i _mm_unpacklo_epi8(__m128i a, __m128i b)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned
8-bit integers in b.

r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1
...
r14 := a7 ; r15 := b7

__m128i _mm_unpacklo_epi16(__m128i a, __m128i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned
16-bit integers in b.

r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1
r4 := a2 ; r5 := b2
r6 := a3 ; r7 := b3

__m128i _mm_unpacklo_epi32(__m128i a, __m128i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2 signed or unsigned
32-bit integers in b.

r0 := a0 ; r1 := b0
r2 := a1 ; r3 := b1

__m128i _mm_unpacklo_epi64(__m128i a, __m128i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned 64-
bit integer in b.

r0 := a0 ; r1 := b0

__m64 _mm_movepi64_pi64(__m128i a)

Returns the lower 64 bits of a as an __m64 type.

r0 := a0 ;

 218

__128i _mm_movpi64_pi64(__m64 a)

Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.

r0 := a0 ; r1 := 0X0 ;

__128i _mm_move_epi64(__128i a)

Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.

r0 := a0 ; r1 := 0X0 ;

Integer Memory and Initialization Operations

Streaming SIMD Extensions 2 Integer Memory and Initialization
The integer load, set, and store intrinsics and their respective instructions provide memory and
initialization operations for the Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

! Load Operations

! Set Operations

! Store Operations

Integer Load Operations for Streaming SIMD Extensions 2
The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_load_si128(__m128i const*p)

(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.

r := *p

__m128i _mm_loadu_si128(__m128i const*p)

(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.

r := *p

__m128i _mm_loadl_epi64(__m128i const*p)

(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result,
zeroing the upper 64 bits of the result.

r0:= *p[63:0]
r1:=0x0

 219

Integer Set Operations for Streaming SIMD Extensions 2
The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

__m128i _mm_set_epi64(__m64 q1, __m64 q0)

Sets the 2 64-bit integer values.

r0 := q0
r1 := q1

__m128i _mm_set_epi32(int i3, int i2, int i1, int i0)

Sets the 4 signed 32-bit integer values.

r0 := i0
r1 := i1
r2 := i2
r3 := i3

__m128i _mm_set_epi16(short w7, short w6, short w5, short w4, short w3, short
w2, short w1, short w0)

Sets the 8 signed 16-bit integer values.

r0 := w0
r1 := w1
...
r7 := w7

__m128i _mm_set_epi8(char b15, char b14, char b13, char b12, char b11, char
b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 16 signed 8-bit integer values.

r0 := b0
r1 := b1
...
r15 := b15

__m128i _mm_set1_epi64(__m64 q)

Sets the 2 64-bit integer values to q.

r0 := q
r1 := q

__m128i _mm_set1_epi32(int i)

Sets the 4 signed 32-bit integer values to i.

r0 := i
r1 := i
r2 := i
r3 := i

 220

__m128i _mm_set1_epi16(short w)

Sets the 8 signed 16-bit integer values to w.

r0 := w
r1 := w
...
r7 := w

__m128i _mm_set1_epi8(char b)

Sets the 16 signed 8-bit integer values to b.

r0 := b
r1 := b
...
r15 := b

__m128i _mm_setr_epi64(__m64 q0, __m64 q1)

Sets the 2 64-bit integer values in reverse order.

r0 := q0
r1 := q1

__m128i _mm_setr_epi32(int i0, int i1, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

r0 := i0
r1 := i1
r2 := i2
r3 := i3

__m128i _mm_setr_epi16(short w0, short w1, short w2, short w3, short w4, short
w5, short w6, short w7)

Sets the 8 signed 16-bit integer values in reverse order.

r0 := w0
r1 := w1
...
r7 := w7

__m128i _mm_setr_epi8(char b15, char b14, char b13, char b12, char b11, char
b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.

r0 := b0
r1 := b1
...
r15 := b15

__m128i _mm_setzero_si128()

Sets the 128-bit value to zero.

r := 0x0

 221

Integer Store Operations for Streaming SIMD Extensions 2
The following store operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmintrin.h header file.

void _mm_store_si128(__m128i *p, __m128i b)

(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.

*p := a

void _mm_storeu_si128(__m128i *p, __m128i b)

(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.

*p := a

void _mm_maskmoveu_si128(__m128i d, __m128i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The high bit of each byte
in the selector n determines whether the corresponding byte in d will be stored. Address p need
not be 16-byte aligned.

if (n0[7]) p[0] := d0
if (n1[7]) p[1] := d1
...
if (n15[7]) p[15] := d15

void _mm_storel_epi64(__m128i *p, __m128i q)

(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.

*p[63:0]:=a0

 222

Intrinsics for Itanium(TM) Instructions
Overview of Intrinsics for Itanium(TM) Instructions
This section lists and describes the native intrinsics for Itanium(TM) instructions. These intrinsics cannot
be used on the IA-32 architecture. The intrinsics for Itanium instructions give programmers access to
Itanium instructions that cannot be generated using the standard constructs of the C and C++ languages.

The prototypes for Itanium intrinsics are in the ia64intrin.h header file.

Native Intrinsics for Itanium(TM) Instructions
The prototypes for Itanium intrinsics are in the ia64intrin.h header file.

Integer Operations

Intrinsic Corresponding
Instruction

__int64 _m64_dep_mr(__int64 r, __int64
s, const int pos, const int len)

dep (Deposit)

__int64 _m64_dep_mi(const int v,
__int64 s, const int p, const int len)

dep (Deposit)

__int64 _m64_dep_zr(__int64 s, const
int pos, const int len)

dep.z (Deposit)

int64 m64 dep zi(const int v, const
int pos, const int len)

dep.z (Deposit)

int64 m64 extr(int64 r, const int
pos, const int len)

extr (Extract)

__int64 _m64_extru(__int64 r, const
int pos, const int len)

extr.u (Extract)

__int64 _m64_xmal(__int64 a, __int64
b, __int64 c)

xma.l (Fixed-point multiply add using the low 64 bits of the 128-
bit result. The result is signed.)

__int64 _m64_xmalu(__int64 a, __int64
b, __int64 c)

xma.lu (Fixed-point multiply add using the low 64 bits of the
128-bit result. The result is unsigned.)

__int64 _m64_xmah(__int64 a, __int64
b, __int64 c)

xma.h (Fixed-point multiply add using the high 64 bits of the
128-bit result. The result is signed.)

__int64 _m64_xmahu(__int64 a, __int64
b, __int64 c)

xma.hu (Fixed-point multiply add using the high 64 bits of the
128-bit result. The result is unsigned.)

__int64 _m64_popcnt(__int64 a) popcnt (Population count)

__int64 _m64_shladd(__int64 a, const
int count, __int64 b)

shladd (Shift left and add)

__int64 _m64_shrp(__int64 a, __int64
b, const int count)

shrp (Shift right pair)

 223

FSR Operations

Intrinsic Description

void _fsetc(int amask, int omask) Sets the control bits of FPSR.sf0. Maps to the
fsetc.sf0 r, r instruction. There is no corresponding
instruction to read the control bits. Use _mm_getfpsr().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR.sf0). Maps to the fclrf.sf0 instruction.

__int64 _m64_dep_mr(__int64 r, __int64 s, const int pos, const int len)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit position and the
result is returned. The deposited bit field begins at bit position pos and extends to the left (toward
the most significant bit) the number of bits specified by len.

__int64 _m64_dep_mi(const int v, __int64 s, const int p, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s at an arbitrary bit
position and the result is returned. The deposited bit field begins at bit position p and extends to
the left (toward the most significant bit) the number of bits specified by len.

__int64 _m64_dep_zr(__int64 s, const int pos, const int len)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an arbitrary bit position
and the result is returned. The deposited bit field begins at bit position pos and extends to the left
(toward the most significant bit) the number of bits specified by len.

__int64 _m64_dep_zi(const int v, const int pos, const int len)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at bit position pos and
extends to the left (toward the most significant bit) the number of bits specified by len.

__int64 _m64_extr(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and sign extended. The
extracted field begins at position pos and extends len bits to the left. The sign is taken from the
most significant bit of the extracted field.

__int64 _m64_extru(__int64 r, const int pos, const int len)

A field is extracted from the 64-bit value r and is returned right-justified and zero extended. The
extracted field begins at position pos and extends len bits to the left. Also, it is necessary to link a
library to satisfy the function call generated by the compiler.

__int64 _m64_xmal(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
signed result. The 64-bit value c is zero-extended and added to the product. The least significant
64 bits of the sum are then returned.

__int64 _m64_xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
unsigned result. The 64-bit value c is zero-extended and added to the product. The least significant
64 bits of the sum are then returned.

 224

__int64 _m64_xmah(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
signed result. The 64-bit value c is zero-extended and added to the product. The most significant
64 bits of the sum are then returned.

__int64 _m64_xmahu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce a full 128-bit
unsigned result. The 64-bit value c is zero-extended and added to the product. The most
significant 64 bits of the sum are then returned.

__int64 _m64_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the resulting sum
is returned.

__int64 _m64_shladd(__int64 a, const int count, __int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

__int64 _m64_shrp(__int64 a, __int64 b, const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits. The least
significant 64 bits of the result are returned.

Lock and Atomic Operation Related Intrinsics
The prototypes for Itanium intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64
_InterlockedExchange8(volatile
unsigned char *Target, unsigned
__int64 value)

Map to the xchg1 instruction. Atomically write the least
significant byte of its 2nd argument to address specified by its 1st
argument.

unsigned __int64
_InterlockedCompareExchange8_rel(volat
ile unsigned char *Destination,
unsigned __int64 Exchange, unsigned
__int64 Comparand)

Compare and exchange atomically the least significant byte at
the address specified by its 1st argument. Maps to the
cmpxchg1.rel instruction with appropriate setup.

unsigned __int64
_InterlockedCompareExchange8_acq(volat
ile unsigned char *Destination,
unsigned __int64 Exchange, unsigned
__int64 Comparand)

Same as above, but using acquire semantic.

unsigned __int64
_InterlockedExchange16(volatile
unsigned short *Target, unsigned
__int64 value)

Map to the xchg2 instruction. Atomically write the least
significant word of its 2nd argument to address specified by its
1st argument.

unsigned __int64
_InterlockedCompareExchange16_rel(vola
tile unsigned short *Destination,
unsigned __int64 Exchange, unsigned
__int64 Comparand)

Compare and exchange atomically the least significant word at
the address specified by its 1st argument. Maps to the
cmpxchg2.rel instruction with appropriate setup.

 225

Intrinsic Description

unsigned __int64
_InterlockedCompareExchange16_acq(vola
tile unsigned short *Destination,
unsigned __int64 Exchange, unsigned
__int64 Comparand)

Same as above, but using acquire semantic.

int InterlockedIncrement(volatile int
*addend)

Atomically increment by one the value specified by its argument.
Maps to the fetchadd4 instruction.

int InterlockedDecrement(volatile int
*addend)

Atomically decrement by one the value specified by its argument.
Maps to the fetchadd4 instruction.

int _InterlockedExchange(volatile int
*Target, int value)

Do an exchange operation atomically. Maps to the xchg4
instruction.

int
_InterlockedCompareExchange(volatile
int *Destination, int Exchange, int
Comparand)

Maps to the cmpxchg4 instruction with appropriate setup.
Atomically compare and exchange the value specified by the first
argument (a 32-bit pointer).

int _InterlockedExchangeAdd(volatile
int *addend, int increment)

Use compare and exchange to do an atomic add of the
increment value to the addend. Maps to a loop with the
cmpxchg4 instruction to guarantee atomicity.

int _InterlockedAdd(volatile int
*addend, int increment)

Same as above; but returns new value, not the original one.

void *
_InterlockedCompareExchangePointer(voi
d * volatile *Destination, void
*Exchange, void *Comparand)

Map the exch8 instruction; Atomically compare and exchange
the pointer value specified by its first argument (all arguments
are pointers)

unsigned __int64
_InterlockedExchangeU(volatile
unsigned int *Target, unsigned int64
value)

Atomically exchange the 32-bit quantity specified by the 1st
argument. Maps to the xchg4 instruction.

unsigned __int64
_InterlockedCompareExchange_rel(volati
le unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Maps to the cmpxchg4.rel instruction with appropriate
setup. Atomically compare and exchange the value specified by
the first argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange_acq(volati
le unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Comparand)

Same as above; but map the cmpxchg4.acq instruction.

void _ReleaseSpinLock(volatile int *x) Release spin lock.

__int64
_InterlockedIncrement64(volatile
__int64 *addend)

Increment by one the value specified by its argument. Maps to
the fetchadd instruction.

__int64
_InterlockedDecrement64(volatile
__int64 *addend)

Decrement by one the value specified by its argument. Maps to
the fetchadd instruction.

 226

Intrinsic Description

__int64
_InterlockedExchange64(volatile
__int64 *Target, __int64 value)

Do an exchange operation atomically. Maps to the xchg
instruction.

unsigned __int64
_InterlockedExchangeU64(volatile
unsigned __int64 *Target, unsigned
__int64 value)

Same as InterlockedExchange64 (for unsigned
quantities).

unsigned __int64
_InterlockedCompareExchange64_rel(vola
tile unsigned __int64 *Destination,
unsigned __int64 Exchange, unsigned
__int64 Comparand)

Maps to the cmpxchg.rel instruction with appropriate
setup. Atomically compare and exchange the value specified by
the first argument (a 64-bit pointer).

unsigned __int64
_InterlockedCompareExchange64_acq(vola
tile unsigned __int64 *Destination,
unsigned __int64 Exchange, unsigned
__int64 Comparand)

Maps to the cmpxchg.acq instruction with appropriate
setup. Atomically compare and exchange the value specified by
the first argument (a 64-bit pointer).

__int64
InterlockedCompareExchange64(volatile

__int64 *Destination, __int64
Exchange, __int64 Comparand)

Same as above for signed quantities.

__int64
_InterlockedExchangeAdd64(volatile
__int64 *addend, __int64 increment)

Use compare and exchange to do an atomic add of the
increment value to the addend. Maps to a loop with the
cmpxchg instruction to guarantee atomicity

__int64 _InterlockedAdd64(volatile
__int64 *addend, __int64 increment);

Same as above. Returns the new value, not the original value.

Operating System Related Intrinsics
The prototypes for Itanium intrinsics are in the ia64intrin.h header file.

Intrinsic Description

unsigned __int64 __getReg(const int
whichReg)

Gets the value from a hardware register based on the index
passed in. Produces a corresponding mov = r instruction.
Provides access to the following registers:
 See Register Names for getReg() and setReg().

void __setReg(const int whichReg,
unsigned __int64 value)

Sets the value for a hardware register based on the index passed
in. Produces a corresponding mov = r instruction.
 See Register Names for getReg() and setReg().

unsigned int64 getIndReg(const int
whichIndReg, __int64 index)

Return the value of an indexed register. The index is the 2nd
argument; the register file is the first argument.

void __setIndReg(const int
whichIndReg, __int64 index, unsigned
__int64 value)

Copy a value in an indexed register. The index is the 2nd
argument; the register file is the first argument.

void *_rdteb(void) Gets TEB address. The TEB address is kept in r13 and maps
to the move r=tp instruction

 227

Intrinsic Description

void __isrlz(void) Executes the serialize instruction. Maps to the srlz.i
instruction.

void __dsrlz(void) Serializes the data. Maps to the srlz.d instruction.

unsigned __int64
__fetchadd4_acq(unsigned int *addend,
const int increment)

Map the fetchadd4.acq instruction.

unsigned __int64
__fetchadd4_rel(unsigned int *addend,
const int increment)

Map the fetchadd4.rel instruction.

unsigned __int64
__fetchadd8_acq(unsigned __int64
*addend, const int increment)

Map the fetchadd8.acq instruction.

unsigned __int64
__fetchadd8_rel(unsigned __int64
*addend, const int increment)

Map the fetchadd8.rel instruction.

void __fwb(void) Flushes the write buffers. Maps to the fwb instruction.

void __ldfs(const int whichFloatReg,
void *src)

Map the ldfs instruction. Load a single precision value to the
specified register.

void __ldfd(const int whichFloatReg,
void *src)

Map the ldfd instruction. Load a double precision value to the
specified register.

void __ldfe(const int whichFloatReg,
void *src)

Map the ldfe instruction. Load an extended precision value to
the specified register.

void __ldf8(const int whichFloatReg,
void *src)

Map the ldf8 instruction.

void __ldf_fill(const int
whichFloatReg, void *src)

Map the ldf.fill instruction.

void __stfs(void *dst, const int
whichFloatReg)

Map the sfts instruction.

void __stfd(void *dst, const int
whichFloatReg)

Map the stfd instruction.

void __stfe(void *dst, const int
whichFloatReg)

Map the stfe instruction.

void __stf8(void *dst, const int
whichFloatReg)

Map the stf8 instruction.

void __stf_spill(void *dst, const int
whichFloatReg)

Map the stf.spill instruction.

void __mf(void) Executes a memory fence instruction. Maps to the mf
instruction.

void __mfa(void) Executes a memory fence, acceptance form instruction. Maps to
the mf.a instruction.

 228

Intrinsic Description

void __synci(void) Enables memory synchronization. Maps to the sync.i
instruction.

void __thash(__int64) Generates a translation hash entry address. Maps to the
thash r = r instruction.

void __ttag(__int64) Generates a translation hash entry tag. Maps to the ttag
r=r instruction.

void __itcd(__int64 pa) Insert an entry into the data translation cache (Map itc.d
instruction).

void __itci(__int64 pa) Insert an entry into the instruction translation cache (Map
itc.i).

void __itrd(__int64 whichTransReg,
__int64 pa)

Map the itr.d instruction.

void __itri(__int64 whichTransReg,
__int64 pa)

Map the itr.i instruction.

void __ptce(__int64 va) Map the ptc.e instruction.

void __ptcl(__int64 va, __int64
pagesz)

Purges the local translation cache. Maps to the ptc.l r, r
instruction.

void __ptcg(__int64 va, __int64
pagesz)

Purges the global translation cache. Maps to the ptc.g r,
r instruction.

void __ptcga(__int64 va, __int64
pagesz)

Purges the global translation cache and ALAT. Maps to the
ptc.ga r, r instruction.

void __ptri(__int64 va, __int64
pagesz)

Purges the translation register. Maps to the ptr.i r, r
instruction.

void __ptrd(__int64 va, __int64
pagesz)

Purges the translation register. Maps to the ptr.d r, r
instruction.

__int64 __tpa(__int64 va) Map the tpa instruction.

void __invalat(void) Invalidates ALAT. Maps to the invala instruction.

void __invala (void) Same as void __invalat(void)

void __invala_gr(const int
whichGeneralReg)

whichGeneralReg = 0-127

void __invala_fr(const int
whichFloatReg)

whichFloatReg = 0-127

void __break(const int) Generates a break instruction with an immediate.

void __nop(const int) Generate a nop instruction.

void __debugbreak(void) Generates a Debug Break Instruction fault.

void __fc(__int64) Flushes a cache line associated with the address given by the
argument. Maps to the fcr instruction.

 229

Intrinsic Description

void __sum(int mask) Sets the user mask bits of PSR. Maps to the sum imm24
instruction.

void __rum(int mask) Resets the user mask.

void __ssm(int mask) Sets the system mask.

void __rsm(int mask) Resets the system mask bits of PSR. Maps to the rsm
imm24 instruction.

__int64 _ReturnAddress(void) Get the caller's address.

void __lfetch(int lfhint, void *y) Generate the lfetch.lfhint instruction. The value of the
first argument specifies the hint type.

void __lfetch_fault(int lfhint, void
*y)

Generate the lfetch.fault.lfhint instruction. The
value of the first argument specifies the hint type.

Itanium(TM) Conversion Intrinsics
The prototypes for Itanium intrinsics are in the ia64intrin.h header file.

Intrinsic Description

__int64 _m_to_int64(__m64 a) Convert a of type __m64 to type __int64.
Translates to nop since both types reside in the same
register on Itanium-based systems.

__m64 _m_from_int64(__int64 a) Convert a of type __int64 to type __m64. Translates
to nop since both types reside in the same register on
Itanium-based systems.

__int64 __round_double_to_int64(double d) Convert its double precision argument to a signed integer.

unsigned __int64 __getf_exp(double d) Map the getf.exp instruction and return the 16-bit
exponent and the sign of its operand.

Register Names for getReg() and setReg()
The prototypes for getReg()and setReg()intrinsics are in the ia64regs.h header file.

Name whichReg

_IA64_REG_IP 1016

_IA64_REG_PSR 1019

_IA64_REG_PSR_L 1019

 230

General Integer Registers

Name whichReg

_IA64_REG_GP 1025

_IA64_REG_SP 1036

_IA64_REG_TP 1037

Application Registers

Name whichReg

_IA64_REG_AR_KR0 3072

_IA64_REG_AR_KR1 3073

_IA64_REG_AR_KR2 3074

_IA64_REG_AR_KR3 3075

_IA64_REG_AR_KR4 3076

_IA64_REG_AR_KR5 3077

_IA64_REG_AR_KR6 3078

_IA64_REG_AR_KR7 3079

_IA64_REG_AR_RSC 3088

_IA64_REG_AR_BSP 3089

_IA64_REG_AR_BSPSTORE 3090

_IA64_REG_AR_RNAT 3091

_IA64_REG_AR_FCR 3093

_IA64_REG_AR_EFLAG 3096

_IA64_REG_AR_CSD 3097

_IA64_REG_AR_SSD 3098

_IA64_REG_AR_CFLAG 3099

_IA64_REG_AR_FSR 3100

_IA64_REG_AR_FIR 3101

_IA64_REG_AR_FDR 3102

_IA64_REG_AR_CCV 3104

_IA64_REG_AR_UNAT 3108

_IA64_REG_AR_FPSR 3112

 231

Name whichReg

_IA64_REG_AR_ITC 3116

_IA64_REG_AR_PFS 3136

_IA64_REG_AR_LC 3137

_IA64_REG_AR_EC 3138

Control Registers

Name whichReg

_IA64_REG_CR_DCR 4096

_IA64_REG_CR_ITM 4097

_IA64_REG_CR_IVA 4098

_IA64_REG_CR_PTA 4104

_IA64_REG_CR_IPSR 4112

_IA64_REG_CR_ISR 4113

_IA64_REG_CR_IIP 4115

_IA64_REG_CR_IFA 4116

_IA64_REG_CR_ITIR 4117

_IA64_REG_CR_IIPA 4118

_IA64_REG_CR_IFS 4119

_IA64_REG_CR_IIM 4120

_IA64_REG_CR_IHA 4121

_IA64_REG_CR_LID 4160

_IA64_REG_CR_IVR 4161 *

_IA64_REG_CR_TPR 4162

_IA64_REG_CR_EOI 4163

_IA64_REG_CR_IRR0 4164 *

_IA64_REG_CR_IRR1 4165 *

_IA64_REG_CR_IRR2 4166 *

_IA64_REG_CR_IRR3 4167 *

_IA64_REG_CR_ITV 4168

_IA64_REG_CR_PMV 4169

 232

Name whichReg

_IA64_REG_CR_CMCV 4170

_IA64_REG_CR_LRR0 4176

_IA64_REG_CR_LRR1 4177

* getReg only

Indirect Registers for getIndReg() and setIndReg()

Name whichReg

_IA64_REG_INDR_CPUID 9000 *

_IA64_REG_INDR_DBR 9001

_IA64_REG_INDR_IBR 9002

_IA64_REG_INDR_PKR 9003

_IA64_REG_INDR_PMC 9004

_IA64_REG_INDR_PMD 9005

_IA64_REG_INDR_RR 9006

_IA64_REG_INDR_RESERVED 9007

* getIndReg only

Itanium(TM) Multimedia Additions
The prototypes for Itanium intrinsics are in the ia64intrin.h header file.

Intrinsic Corresponding Instruction

__int64 _m64_czx1l(__m64 a) czx1.l (Compute Zero Index)

__int64 _m64_czx1r(__m64 a) czx1.r (Compute Zero Index)

__int64 _m64_czx2l(__m64 a) czx2.l (Compute Zero Index)

__int64 _m64_czx2r(__m64 a) czx2.r (Compute Zero Index)

__m64 _m64_mix1l(__m64 a, __m64 b) mix1.l (Mix)

__m64 _m64_mix1r(__m64 a, __m64 b) mix1.r (Mix)

__m64 _m64_mix2l(__m64 a, __m64 b) mix2.l (Mix)

__m64 _m64_mix2r(__m64 a, __m64 b) mix2.r (Mix)

__m64 _m64_mix4l(__m64 a, __m64 b) mix4.l (Mix)

__m64 _m64_mix4r(__m64 a, __m64 b) mix4.r (Mix)

 233

Intrinsic Corresponding Instruction

__m64 _m64_mux1(__m64 a, const int n) mux1 (Mux)

__m64 _m64_mux2(__m64 a, const int n) mux2 (Mux)

__m64 _m64_padd1uus(__m64 a, __m64 b) padd1.uus (Parallel add)

__m64 _m64_padd2uus(__m64 a, __m64 b) padd2.uus (Parallel add)

__m64 _m64_pavg1_nraz(__m64 a, __m64 b) pavg1 (Parallel average)

__m64 _m64_pavg2_nraz(__m64 a, __m64 b) pavg2 (Parallel average)

__m64 _m64_pavgsub1(__m64 a, __m64 b) pavgsub1 (Parallel average subtract)

__m64 _m64_pavgsub2(__m64 a, __m64 b) pavgsub2 (Parallel average subtract)

__m64 _m64_pmpy2r(__m64 a, __m64 b) pmpy2.r (Parallel multiply)

__m64 _m64_pmpy2l(__m64 a, __m64 b) pmpy2.l (Parallel multiply)

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int
count)

pmpyshr2 (Parallel multiply and shift right)

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int
count)

pmpyshr2.u (Parallel multiply and shift right)

__m64 _m64_pshladd2(__m64 a, const int count,
__m64 b)

pshladd2 (Parallel shift left and add)

__m64 _m64_pshradd2(__m64 a, const int count,
__m64 b)

pshradd2 (Parallel shift right and add)

__m64 _m64_psub1uus(__m64 a, __m64 b) psub1.uus (Parallel subtract)

__m64 _m64_psub2uus(__m64 a, __m64 b) psub2.uus (Parallel subtract)

__int64 _m64_czx1l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least
significant element, and the index of the first zero element is returned. The element width is 8 bits,
so the range of the result is from 0 - 7. If no zero element is found, the default result is 8.

__int64 _m64_czx1r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most
significant element, and the index of the first zero element is returned. The element width is 8 bits,
so the range of the result is from 0 - 7. If no zero element is found, the default result is 8.

__int64 _m64_czx2l(__m64 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least
significant element, and the index of the first zero element is returned. The element width is 16 bits,
so the range of the result is from 0 - 3. If no zero element is found, the default result is 4.

 234

__int64 _m64_czx2r(__m64 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most
significant element, and the index of the first zero element is returned. The element width is 16 bits,
so the range of the result is from 0 - 3. If no zero element is found, the default result is 4.

__m64 _m64_mix1l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as shown in Figure 1,
and return the result.

__m64 _m64_mix1r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as shown in Figure 2,
and return the result.

__m64 _m64_mix2l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as shown in Figure 3,
and return the result.

__m64 _m64_mix2r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as shown in Figure 4,
and return the result.

 235

__m64 _m64_mix4l(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as shown in Figure 5,
and return the result.

__m64 _m64_mix4r(__m64 a, __m64 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as shown in Figure 6,
and return the result.

 236

__m64 _m64_mux1(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and the result is
returned. Table 1 shows the possible values of n.

Table 1. Values of n for m64_mux1Operation

 n

@brcst 0

@mix 8

@shuf 9

@alt 0xA

@rev 0xB

 237

__m64 _m64_mux2(__m64 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and the result is
returned.

__m64 _m64_pavgsub1(__m64 a, __m64 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data elements (bytes)
of a and the results of the subtraction are then each independently shifted to the right by one
position. The high-order bits of each element are filled with the borrow bits of the subtraction.

__m64 _m64_pavgsub2(__m64 a, __m64 b)

The unsigned data elements (double bytes) of b are subtracted from the unsigned data elements
(double bytes) of a and the results of the subtraction are then each independently shifted to the
right by one position. The high-order bits of each element are filled with the borrow bits of the
subtraction.

 238

__m64 _m64_pmpy2l(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the most significant data element, are multiplied
by the corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned
as shown in Figure 9.

__m64 _m64_pmpy2r(__m64 a, __m64 b)

Two signed 16-bit data elements of a, starting with the least significant data element, are multiplied
by the corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned
as shown in Figure 10.

__m64 _m64_pmpyshr2(__m64 a, __m64 b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed 16-bit data
elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits and
the least significant 16 bits of each shifted product form 4 16-bit results, which are returned as one
64-bit word.

__m64 _m64_pmpyshr2u(__m64 a, __m64 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding unsigned 16-bit
data elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits
and the least significant 16 bits of each shifted product form 4 16-bit results, which are returned as
one 64-bit word.

 239

__m64 _m64_pshladd2(__m64 a, const int count, __m64 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the result are
forced to 0, and then bits [31:30] of b are copied to bits [62:61] of the result. The result is returned.

__m64 _m64_pshradd2(__m64 a, const int count, __m64 b)

The four signed 16-bit data elements of a are each independently shifted to the right by count bits
(the high order bits of each element are filled with the initial value of the sign bits of the data
elements in a); they are then added to the four signed 16-bit data elements of b. The result is
returned.

__m64 _m64_padd1uus(__m64 a, __m64 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are
returned as one 64-bit word.

__m64 _m64_padd2uus(__m64 a, __m64 b)

a is added to b as four separate 16-bit wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are
returned as one 64-bit word.

__m64 _m64_psub1uus(__m64 a, __m64 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned and
are returned as one 64-bit word.

__m64 _m64_psub2uus(__m64 a, __m64 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned and
are returned as one 64-bit word.

__m64 _m64_pavg1_nraz(__m64 a, __m64 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide data elements of
b and the results of each add are then independently shifted to the right by one position. The high-
order bits of each element are filled with the carry bits of the sums.

__m64 _m64_pavg2_nraz(__m64 a, __m64 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide data elements
of b and the results of each add are then independently shifted to the right by one position. The
high-order bits of each element are filled with the carry bits of the sums.

 240

Data Alignment, Memory Allocation Intrinsics, and
Inline Assembly
Overview of Data Alignment, Memory Allocation Intrinsics, and Inline
Assembly
This section describes features that support usage of the intrinsics. The following topics are described:

! Alignment Support

! Allocating and Freeing Aligned Memory Blocks

! Inline Assembly

Alignment Support
To improve intrinsics performance, you need to align data. For example, when you are using the
Streaming SIMD Extensions, you should align data to 16 bytes in memory operations to improve
performance. Specifically, you must align __m128 objects as addresses passed to the _mm_load and
_mm_store intrinsics. If you want to declare arrays of floats and treat them as __m128 objects by
casting, you need to ensure that the float arrays are properly aligned.

Use __declspec(align) to direct the compiler to align data more strictly than it otherwise does on
both IA-32 and Itanium(TM)-based systems. For example, a data object of type int is allocated at a byte
address which is a multiple of 4 by default (the size of an int). However, by using __declspec(align),
you can direct the compiler to instead use an address which is a multiple of 8, 16, or 32 with the following
restrictions on IA-32:

! 32-byte addresses must be statically allocated

! 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering
small objects that are commonly used together into a struct, and forcing the struct to be allocated at
the beginning of a cache line, you can effectively guarantee that each object is loaded into the cache as
soon as any one is accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:

align(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested
alignment.

Caution

In this release, __declspec(align(8)) does not function correctly. Use __declspec(align(16))
instead.

 241

Note

If a value is specified that is less than the alignment of the affected data type, it has no effect. In other
words, data is aligned to the maximum of its own alignment or the alignment specified with
__declspec(align).

You can request alignments for individual variables, whether of static or automatic storage duration.
(Global and static variables have static storage duration; local variables have automatic storage duration
by default.) You cannot adjust the alignment of a parameter, nor a field of a struct or class. You can,
however, increase the alignment of a struct (or union or class), in which case every object of that
type is affected.

As an example, suppose that a function uses local variables i and j as subscripts into a 2-dimensional
array. They might be declared as follows:

int i, j;

These variables are commonly used together. But they can fall in different cache lines, which could be
detrimental to performance. You can instead declare them as follows:

__declspec(align(8)) struct { int i, j; } sub;

The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the
struct variable name (written as sub in the above example). In C, however, it is required, and you must
write references to i and j as sub.i and sub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a struct
type for them, as in the following example:

typedef struct __declspec(align(8)) { int i, j; } Sub;

By placing the __declspec(align) after the keyword struct, you are requesting the appropriate
alignment for all objects of that type. However, that allocation of parameters is unaffected by
__declspec(align). (If necessary, you can assign the value of a parameter to a local variable with the
appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks
Use the _mm_malloc and _mm_free intrinsics to allocate and free aligned blocks of memory. These
intrinsics are based on malloc and free, which are in the libirc.a library. The syntax for these
intrinsics is as follows:

void* _mm_malloc (int size, int align)

void _mm_free (void *p)

The _mm_malloc routine takes an extra parameter, which is the alignment constraint. This constraint
must be a power of two. The pointer that is returned from _mm_malloc is guaranteed to be aligned on
the specified boundary.

 242

Note

Memory that is allocated using _mm_malloc must be freed using _mm_free . Calling free on memory
allocated with _mm_malloc or calling _mm_free on memory allocated with malloc will cause
unpredictable behavior.

Inline Assembly
By default, the compiler inlines a number of standard C, C++, and math library functions. This usually
results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library
functions do not set the errno variable. So, in code that relies upon the setting of the errno variable,
you should use the -nolib_inline option, which turns off inline expansion of library functions. Also, if
one of your functions has the same name as one of the compiler's supplied library functions, the compiler
assumes that it is one of the latter and replaces the call with the inlined version. Consequently, if the
program defines a function with the same name as one of the known library routines, you must use the -
nolib_inline option to ensure that the program's function is the one used.

Note

Automatic inline expansion of library functions is not related to the inline expansion that the compiler does
during interprocedural optimizations. For example, the following command compiles the program sum.cpp
without expanding the library functions, but with inline expansion from interprocedural optimizations (IPO):

! IA-32 Systems: prompt>icc -ip -nolib_inline sum.cpp

! Itanium(TM)-based Systems: prompt>ecc -ip -nolib_inline sum.cpp

For details on IPO, see Interprocedural Optimizations.

MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the -use_msasm option. See your
MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm-keyword [volatile-keyword] (asm-template [asm-interface]) ;

Syntax Element Description

asm-keyword asm statements begin with the keyword asm. Alternatively, either __asm or __asm__ may
be used for compatibility.

volatile-keyword If the optional keyword volatile is given, the asm is volatile. Two volatile asm
statements will never be moved past each other, and a reference to a volatile variable will
not be moved relative to a volatile asm. Alternate keywords __volatile and
__volatile__ may be used for compatibility.

asm-template The asm-template is a C language ASCII string which specifies how to output the assembly
code for an instruction. Most of the template is a fixed string; everything but the substitution-
directives, if any, is passed through to the assembler. The syntax for a substitution directive is a %
followed by one or two characters. The supported substitution directives are specified in a
subsequent section.

 243

Syntax Element Description

asm-interface The asm-interface consists of three parts:
 1. an optional output-list
 2. an optional input-list
 3. an optional clobber-list
 These are separated by colon (:) characters. If the output-list is missing, but an
input-list is given, the input list may be preceded by two colons (::)to take the place of the
missing output-list. If the asm-interface is omitted altogether, the asm statement
is considered volatile regardless of whether a volatile-keyword was specified.

output-list An output-list consists of one or more output-specs separated by commas. For
the purposes of substitution in the asm-template, each output-spec is numbered.
The first operand in the output-list is numbered 0, the second is 1, and so on. Numbering
is continuous through the output-list and into the input-list. The total number of
operands is limited to 10 (i.e. 0-9).

input-list Similar to an output-list, an input-list consists of one or more input-specs
separated by commas. For the purposes of substitution in the asm-template, each
input-spec is numbered, with the numbers continuing from those in the output-list.

clobber-list A clobber-list tells the compiler that the asm uses or changes a specific machine
register that is either coded directly into the asm or is changed implicitly by the assembly
instruction. The clobber-list is a comma-separated list of clobber-specs.

input-spec The input-specs tell the compiler about expressions whose values may be needed by the
inserted assembly instruction. In order to describe fully the input requirements of the asm, you
can list input-specs that are not actually referenced in the asm-template.

clobber-spec Each clobber-spec specifies the name of a single machine register that is clobbered. The
register name may optionally be preceded by a %. The following are the valid register names:
eax, ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di, bp, sp, al, bl, cl, dl, ah, bh, ch, dh, st,
st(1) – st(7), mm0 – mm7, xmm0 – xmm7, and cc. It is also legal to specify “memory” in a
clobber-spec. This prevents the compiler from keeping data cached in registers across the
asm statement.

 244

Intrinsics Cross-processor Implementation
Intrinsics Cross-processor Implementation
This section provides a series of tables that compare intrinsics performance across architectures. Before
implementing intrinsics across architectures, please note the following.

! Instrinsics may generate code that does not run on all IA processors. Therefore the programmer
is responsible for using CPUID to detect the processor and generating the appropriate code.

! Implement intrinsics by processor family, not by specific processor. The guiding principle for
which family–IA-32 or Itanium(TM) processors–the intrinsic is implemented on is performance,
not compatibility. Where there is added performance on both families, the intrinsic will be
identical.

Intrinsics For Implementation Across All IA

Key to the table entries

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

int abs(int) A A A A A

long
labs(long)

A A A A A

unsigned
long
__lrotl(unsi
gned long
value, int
shift)

A A A A A

unsigned
long
__lrotr(unsi
gned long
value, int
shift)

A A A A A

unsigned int
__rotl(unsig
ned int
value, int
shift)

A A A A A

unsigned int
t (i

A A A A A

 245

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

__rotr(unsig
ned int
value, int
shift)

__int64
__i64_rotl(_
_int64
value, int
shift)

A A A A A

__int64
__i64_rotr(_
_int64
value, int
shift)

A A A A A

double
fabs(double)

A A A A A

double
log(double)

A A A A A

float
logf(float)

A A A A A

double
log10(double
)

A A A A A

float
log10f(float
)

A A A A A

double
exp(double)

A A A A A

float
expf(float)

A A A A A

double
pow(double,
double)

A A A A A

float
powf(float,
float)

A A A A A

double
sin(double)

A A A A A

float
sinf(float)

A A A A A

double
cos(double)

A A A A A

 246

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

float
cosf(float)

A A A A A

double
tan(double)

A A A A A

float
tanf(float)

A A A A A

double
acos(double)

A A A A A

float
acosf(float)

A A A A A

double
acosh(double
)

A A A A A

float
acoshf(float
)

A A A A A

double
asin(double)

A A A A A

float
asinf(float)

A A A A A

double
asinh(double
)

A A A A A

float
asinhf(float
)

A A A A A

double
atan(double)

A A A A A

float
atanf(float)

A A A A A

double
atanh(double
)

A A A A A

float
atanhf(float
)

A A A A A

float
cabs(double)
*

A A A A A

double
ceil(double)

A A A A A

 247

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

float
ceilf(float)

A A A A A

double
cosh(double)

A A A A A

float
coshf(float)

A A A A A

float
fabsf(float)

A A A A A

double
floor(double
)

A A A A A

float
floorf(float
)

A A A A A

double
fmod(double)

A A A A A

float
fmodf(float)

A A A A A

double
hypot(double
, double)

A A A A A

float
hypotf(float
)

A A A A A

double
rint(double)

A A A A A

float
rintf(float)

A A A A A

double
sinh(double)

A A A A A

float
sinhf(float)

A A A A A

float
sqrtf(float)

A A A A A

double
tanh(double)

A A A A A

float
tanhf(float)

A A A A A

 248

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

char
*_strset(cha
r *, _int32)

A A A A A

void
*memcmp(cons
t void *cs,
const void
*ct, size_t
n)

A A A A A

void
*memcpy(void
*s, const
void *ct,
size_t n)

A A A A A

void
*memset(void
* s, int c,
size_t n)

A A A A A

char
*Strcat(char
* s, const
char * ct)

A A A A A

int
*strcmp(cons
t char *,
const char
*)

A A A A A

char
*strcpy(char
* s, const
char * ct)

A A A A A

size_t
strlen(const
char * cs)

A A A A A

int
strncmp(char
*, char *,
int)

A A A A A

int
strncpy(char
*, char *,
int)

A A A A A

void
*__alloca(in
t)

A A A A A

 249

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

int
setjmp(jmp
buf)

A A A A A

_exception_c
ode(void)

A A A A A

_exception_i
nfo(void)

A A A A A

_abnormal_te
rmination(vo
id)

A A A A A

void
_enable()

A A A A A

void
_disable()

A A A A A

int
_bswap(int)

A A A A A

int
_in_byte(int
)

A A A A A

int
_in_dword(in
t)

A A A A A

int
_in_word(int
)

A A A A A

int
_inp(int)

A A A A A

int
_inpd(int)

A A A A A

int
_inpw(int)

A A A A A

int
_out_byte(in
t, int)

A A A A A

int
_out_dword(i
nt, int)

A A A A A

int
_out_word(in
t, int)

A A A A A

 250

Intrinsic Across All IA MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM)
Architecture

int
_outp(int,
int)

A A A A A

int
_outpd(int,
int)

A A A A A

int
_outpw(int,
int)

A A A A A

 251

MMX(TM) Technology Intrinsics Implementation

Key to the table entries

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_m_empty _mm_empty N/A A A A B

_m_from_in
t

_mm_cvtsi3
2_si64

N/A A A A A

_m_to_int _mm_cvtsi6
4_si32

N/A A A A A

_m_packssw
b

_mm_packs_
pi16

N/A A A A A

_m_packssd
w

_mm_packs_
pi32

N/A A A A A

_m_packusw
b

_mm_packs_
pu16

N/A A A A A

_m_punpckh
bw

_mm_unpack
hi_pi8

N/A A A A A

_m_punpckh
wd

_mm_unpack
hi_pi16

N/A A A A A

_m_punpckh
dq

_mm_unpack
hi_pi32

N/A A A A A

_m_punpckl
bw

_mm_unpack
lo_pi8

N/A A A A A

_m_punpckl
wd

_mm_unpack
lo_pi16

N/A A A A A

_m_punpckl
dq

_mm_unpack
lo_pi32

N/A A A A A

_m_paddb _mm_add_pi
8

N/A A A A A

_m_paddw _mm_add_pi
16

N/A A A A A

_m_paddd _mm_add_pi
32

N/A A A A A

 252

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_m_paddsb _mm_adds_p
i8

N/A A A A A

_m_paddsw _mm_adds_p
i16

N/A A A A A

_m_paddusb _mm_adds_p
u8

N/A A A A A

_m_paddusw _mm_adds_p
u16

N/A A A A A

_m_psubb _mm_sub_pi
8

N/A A A A A

_m_psubw _mm_sub_pi
16

N/A A A A A

_m_psubd _mm_sub_pi
32

N/A A A A A

_m_psubsb _mm_subs_p
i8

N/A A A A A

_m_psubsw _mm_subs_p
i16

N/A A A A A

_m_psubusb _mm_subs_p
u8

N/A A A A A

_m_psubusw _mm_subs_p
u16

N/A A A A A

_m_pmaddwd _mm_madd_p
i16

N/A A A A C

_m_pmulhw _mm_mulhi_
pi16

N/A A A A A

_m_pmullw _mm_mullo_
pi16

N/A A A A A

_m_psllw _mm_sll_pi
16

N/A A A A A

_m_psllwi _mm_slli_p
i16

N/A A A A A

_m_pslld _mm_sll_pi
32

N/A A A A A

_m_pslldi _mm_slli_p
i32

N/A A A A A

_m_psllq _mm_sll_si
64

N/A A A A A

 253

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_m_psllqi _mm_slli_s
i64

N/A A A A A

_m_psraw _mm_sra_pi
16

N/A A A A A

_m_psrawi _mm_srai_p
i16

N/A A A A A

_m_psrad _mm_sra_pi
32

N/A A A A A

_m_psradi _mm_srai_p
i32

N/A A A A A

_m_psrlw _mm_srl_pi
16

N/A A A A A

_m_psrlwi _mm_srli_p
i16

N/A A A A A

_m_psrld _mm_srl_pi
32

N/A A A A A

_m_psrldi _mm_srli_p
i32

N/A A A A A

_m_psrlq _mm_srl_si
64

N/A A A A A

_m_psrlqi _mm_srli_s
i64

N/A A A A A

_m_pand _mm_and_si
64

N/A A A A A

_m_pandn _mm_andnot
_si64

N/A A A A A

_m_por _mm_or_si6
4

N/A A A A A

_m_pxor _mm_xor_si
64

N/A A A A A

_m_pcmpeqb _mm_cmpeq_
pi8

N/A A A A A

_m_pcmpeqw _mm_cmpeq_
pi16

N/A A A A A

_m_pcmpeqd _mm_cmpeq_
pi32

N/A A A A A

_m_pcmpgtb _mm_cmpgt_
pi8

N/A A A A A

 254

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_m_pcmpgtw _mm_cmpgt_
pi16

N/A A A A A

_m_pcmpgtd _mm_cmpgt_
pi32

N/A A A A A

_mm_setzer
o_si64

 N/A A A A A

_mm_set_pi
32

 N/A A A A A

_mm_set_pi
16

 N/A A A A C

_mm_set_pi
8

 N/A A A A C

_mm_set1_p
i32

 N/A A A A A

_mm_set1_p
i16

 N/A A A A A

_mm_set1_p
i8

 N/A A A A A

_mm_setr_p
i32

 N/A A A A A

_mm_setr_p
i16

 N/A A A A C

_mm_setr_p
i8

 N/A A A A C

_mm_empty is implemented in Itanium instructions as a NOP for source compatibility only.

 255

Streaming SIMD Extensions Intrinsics Implementation
Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On Itanium(TM)-
based systemsbasic operations like add or compare will require two SIMD instructions. Both can be
executed in the same cycle so the throughput is one basic Streaming SIMD Extensions operation per
cycle or 4 32-bit single precision operations per cycle.

Key to the table entries

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_add_ss N/A N/A B B B

_mm_add_ps N/A N/A A A A

_mm_sub_ss N/A N/A B B B

_mm_sub_ps N/A N/A A A A

_mm_mul_ss N/A N/A B B B

_mm_mul_ps N/A N/A A A A

_mm_div_ss N/A N/A B B B

_mm_div_ps N/A N/A A A A

_mm_sqrt_s
s

 N/A N/A B B B

_mm_sqrt_p
s

 N/A N/A A A A

_mm_rcp_ss N/A N/A B B B

_mm_rcp_ps N/A N/A A A A

_mm_rsqrt_
ss

 N/A N/A B B B

_mm_rsqrt_
ps

 N/A N/A A A A

_mm_min_ss N/A N/A B B B

_mm_min_ps N/A N/A A A A

 256

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_max_ss N/A N/A B B B

_mm_max_ps N/A N/A A A A

_mm_and_ps N/A N/A A A A

_mm_andnot
_ps

 N/A N/A A A A

_mm_or_ps N/A N/A A A A

_mm_xor_ps N/A N/A A A A

_mm_cmpeq_
ss

 N/A N/A B B B

_mm_cmpeq_
ps

 N/A N/A A A A

_mm_cmplt_
ss

 N/A N/A B B B

_mm_cmplt_
ps

 N/A N/A A A A

_mm_cmple_
ss

 N/A N/A B B B

_mm_cmple_
ps

 N/A N/A A A A

_mm_cmpgt_
ss

 N/A N/A B B B

_mm_cmpgt_
ps

 N/A N/A A A A

_mm_cmpge_
ss

 N/A N/A B B B

_mm_cmpge_
ps

 N/A N/A A A A

_mm_cmpneq
_ss

 N/A N/A B B B

_mm_cmpneq
_ps

 N/A N/A A A A

_mm_cmpnlt
_ss

 N/A N/A B B B

_mm_cmpnlt
_ps

 N/A N/A A A A

_mm_cmpnle
ss

 N/A N/A B B B

 257

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_ss

_mm_cmpnle
_ps

 N/A N/A A A A

_mm_cmpngt
_ss

 N/A N/A B B B

_mm_cmpngt
_ps

 N/A N/A A A A

_mm_cmpnge
_ss

 N/A N/A B B B

_mm_cmpnge
_ps

 N/A N/A A A A

_mm_cmpord
_ss

 N/A N/A B B B

_mm_cmpord
_ps

 N/A N/A A A A

_mm_cmpuno
rd_ss

 N/A N/A B B B

_mm_cmpuno
rd_ps

 N/A N/A A A A

_mm_comieq
_ss

 N/A N/A B B B

_mm_comilt
_ss

 N/A N/A B B B

_mm_comile
_ss

 N/A N/A B B B

_mm_comigt
_ss

 N/A N/A B B B

_mm_comige
_ss

 N/A N/A B B B

_mm_comine
q_ss

 N/A N/A B B B

_mm_ucomie
q_ss

 N/A N/A B B B

_mm_ucomil
t_ss

 N/A N/A B B B

_mm_ucomil
e_ss

 N/A N/A B B B

_mm_ucomig
t_ss

 N/A N/A B B B

 258

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_ucomig
e_ss

 N/A N/A B B B

_mm_ucomin
eq_ss

 N/A N/A B B B

_mm_cvt_ss
2si

_mm_cvtss_
si32

N/A N/A A A B

_mm_cvt_ps
2pi

_mm_cvtps_
pi32

N/A N/A A A A

_mm_cvtt_s
s2si

_mm_cvttss
_si32

N/A N/A A A B

_mm_cvtt_p
s2pi

_mm_cvttps
_pi32

N/A N/A A A A

_mm_cvt_si
2ss

_mm_cvtsi3
2_ss

N/A N/A A A B

_mm_cvt_pi
2ps

_mm_cvtpi3
2_ps

N/A N/A A A C

_mm_cvtpi1
6_ps

 N/A N/A A A C

_mm_cvtpu1
6_ps

 N/A N/A A A C

_mm_cvtpi8
_ps

 N/A N/A A A C

_mm_cvtpu8
_ps

 N/A N/A A A C

_mm_cvtpi3
2x2_ps

 N/A N/A A A C

_mm_cvtps_
pi16

 N/A N/A A A C

_mm_cvtps_
pi8

 N/A N/A A A C

_mm_move_s
s

 N/A N/A A A A

_mm_shuffl
e_ps

 N/A N/A A A A

_mm_unpack
hi_ps

 N/A N/A A A A

_mm_unpack
lo_ps

 N/A N/A A A A

 259

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_movehl
_ps

 N/A N/A A A A

_mm_movelh
_ps

 N/A N/A A A A

_mm_movema
sk_ps

 N/A N/A A A C

_mm_getcsr N/A N/A A A A

_mm_setcsr N/A N/A A A A

_mm_loadh_
pi

 N/A N/A A A A

_mm_loadl_
pi

 N/A N/A A A A

_mm_load_s
s

 N/A N/A A A B

_mm_load_p
s1

_mm_load1_
ps

N/A N/A A A A

_mm_load_p
s

 N/A N/A A A A

_mm_loadu_
ps

 N/A N/A A A A

_mm_loadr_
ps

 N/A N/A A A A

_mm_storeh
_pi

 N/A N/A A A A

_mm_storel
_pi

 N/A N/A A A A

_mm_store_
ss

 N/A N/A A A A

_mm_store_
ps

 N/A N/A A A A

_mm_store_
ps1

_mm_store1
_ps

N/A N/A A A A

_mm_storeu
_ps

 N/A N/A A A A

_mm_storer
_ps

 N/A N/A A A A

_mm_set_ss N/A N/A A A A

 260

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_set_ps
1

_mm_set1_p
s

N/A N/A A A A

_mm_set_ps N/A N/A A A A

_mm_setr_p
s

 N/A N/A A A A

_mm_setzer
o_ps

 N/A N/A A A A

_mm_prefet
ch

 N/A N/A A A A

_mm_stream
_pi

 N/A N/A A A A

_mm_stream
_ps

 N/A N/A A A A

_mm_sfence N/A N/A A A A

_m_pextrw _mm_extrac
t_pi16

N/A N/A A A A

_m_pinsrw _mm_insert
_pi16

N/A N/A A A A

_m_pmaxsw _mm_max_pi
16

N/A N/A A A A

_m_pmaxub _mm_max_pu
8

N/A N/A A A A

_m_pminsw _mm_min_pi
16

N/A N/A A A A

_m_pminub _mm_min_pu
8

N/A N/A A A A

_m_pmovmsk
b

_mm_movema
sk_pi8

N/A N/A A A C

_m_pmulhuw _mm_mulhi_
pu16

N/A N/A A A A

_m_pshufw _mm_shuffl
e_pi16

N/A N/A A A A

_m_maskmov
q

_mm_maskmo
ve_si64

N/A N/A A A C

_m_pavgb _mm_avg_pu
8

N/A N/A A A A

_m_pavgw _mm_avg_pu
16

N/A N/A A A A

 261

Intrinsic
Name

Alternate
Name

Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_m_psadbw _mm_sad_pu
8

N/A N/A A A A

 262

Streaming SIMD Extensions 2 Intrinsics Implementation
Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-point
values. The Intel® Itanium(TM) processor does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries:

! A = Expected to give significant performance gain over non-intrinsic-based code equivalent.

! B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

! C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_add_sd N/A N/A N/A A N/A

_mm_add_pd N/A N/A N/A A N/A

_mm_sub_sd N/A N/A N/A A N/A

_mm_sub_pd N/A N/A N/A A N/A

_mm_mul_sd N/A N/A N/A A N/A

_mm_mul_pd N/A N/A N/A A N/A

_mm_sqrt_sd N/A N/A N/A A N/A

_mm_sqrt_pd N/A N/A N/A A N/A

_mm_div_sd N/A N/A N/A A N/A

_mm_div_pd N/A N/A N/A A N/A

_mm_min_sd N/A N/A N/A A N/A

_mm_min_pd N/A N/A N/A A N/A

_mm_max_sd N/A N/A N/A A N/A

_mm_max_pd N/A N/A N/A A N/A

_mm_and_pd N/A N/A N/A A N/A

_mm_andnot_p
d

N/A N/A N/A A N/A

_mm_or_pd N/A N/A N/A A N/A

_mm_xor_pd N/A N/A N/A A N/A

 263

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_cmpeq_sd N/A N/A N/A A N/A

_mm_cmpeq_pd N/A N/A N/A A N/A

_mm_cmplt_sd N/A N/A N/A A N/A

_mm_cmplt_pd N/A N/A N/A A N/A

_mm_cmple_sd N/A N/A N/A A N/A

_mm_cmple_pd N/A N/A N/A A N/A

_mm_cmpgt_sd N/A N/A N/A A N/A

_mm_cmpgt_pd N/A N/A N/A A N/A

_mm_cmpge_sd N/A N/A N/A A N/A

_mm_cmpge_pd N/A N/A N/A A N/A

_mm_cmpneq_s
d

N/A N/A N/A A N/A

_mm_cmpneq_p
d

N/A N/A N/A A N/A

_mm_cmpnlt_s
d

N/A N/A N/A A N/A

_mm_cmpnlt_p
d

N/A N/A N/A A N/A

_mm_cmpnle_s
d

N/A N/A N/A A N/A

_mm_cmpnle_p
d

N/A N/A N/A A N/A

_mm_cmpngt_s
d

N/A N/A N/A A N/A

_mm_cmpngt_p
d

N/A N/A N/A A N/A

_mm_cmpnge_s
d

N/A N/A N/A A N/A

_mm_cmpnge_p
d

N/A N/A N/A A N/A

_mm_cmpord_p
d

N/A N/A N/A A N/A

_mm_cmpord_s
d

N/A N/A N/A A N/A

 264

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_cmpunord
_pd

N/A N/A N/A A N/A

_mm_cmpunord
_sd

N/A N/A N/A A N/A

_mm_comieq_s
d

N/A N/A N/A A N/A

_mm_comilt_s
d

N/A N/A N/A A N/A

_mm_comile_s
d

N/A N/A N/A A N/A

_mm_comigt_s
d

N/A N/A N/A A N/A

_mm_comige_s
d

N/A N/A N/A A N/A

_mm_comineq_
sd

N/A N/A N/A A N/A

_mm_ucomieq_
sd

N/A N/A N/A A N/A

_mm_ucomilt_
sd

N/A N/A N/A A N/A

_mm_ucomile_
sd

N/A N/A N/A A N/A

_mm_ucomigt_
sd

N/A N/A N/A A N/A

_mm_ucomige_
sd

N/A N/A N/A A N/A

_mm_ucomineq
_sd

N/A N/A N/A A N/A

_mm_cvtepi32
_pd

N/A N/A N/A A N/A

_mm_cvtpd_ep
i32

N/A N/A N/A A N/A

_mm_cvttpd_e
pi32

N/A N/A N/A A N/A

_mm_cvtepi32
_ps

N/A N/A N/A A N/A

 265

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_cvtps_ep
i32

N/A N/A N/A A N/A

_mm_cvttps_e
pi32

N/A N/A N/A A N/A

_mm_cvtpd_ps N/A N/A N/A A N/A

_mm_cvtps_pd N/A N/A N/A A N/A

_mm_cvtsd_ss N/A N/A N/A A N/A

_mm_cvtss_sd N/A N/A N/A A N/A

_mm_cvtsd_si
32

N/A N/A N/A A N/A

_mm_cvttsd_s
i32

N/A N/A N/A A N/A

_mm_cvtsi32_
sd

N/A N/A N/A A N/A

_mm_cvtpd_pi
32

N/A N/A N/A A N/A

_mm_cvttpd_p
i32

N/A N/A N/A A N/A

_mm_cvtpi32_
pd

N/A N/A N/A A N/A

_mm_unpackhi
_pd

N/A N/A N/A A N/A

_mm_unpacklo
_pd

N/A N/A N/A A N/A

_mm_unpacklo
_pd

N/A N/A N/A A N/A

_mm_shuffle_
pd

N/A N/A N/A A N/A

_mm_load_pd N/A N/A N/A A N/A

_mm_load1_pd N/A N/A N/A A N/A

_mm_loadr_pd N/A N/A N/A A N/A

_mm_loadu_pd N/A N/A N/A A N/A

_mm_load_sd N/A N/A N/A A N/A

_mm_loadh_pd N/A N/A N/A A N/A

 266

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_loadl_pd N/A N/A N/A A N/A

_mm_set_sd N/A N/A N/A A N/A

_mm_set1_pd N/A N/A N/A A N/A

_mm_set_pd N/A N/A N/A A N/A

_mm_setr_pd N/A N/A N/A A N/A

_mm_setzero_
pd

N/A N/A N/A A N/A

_mm_move_sd N/A N/A N/A A N/A

_mm_store_sd N/A N/A N/A A N/A

_mm_store1_p
d

N/A N/A N/A A N/A

_mm_store_pd N/A N/A N/A A N/A

_mm_storeu_p
d

N/A N/A N/A A N/A

_mm_storer_p
d

N/A N/A N/A A N/A

_mm_storeh_p
d

N/A N/A N/A A N/A

_mm_storel_p
d

N/A N/A N/A A N/A

_mm_add_epi8 N/A N/A N/A A N/A

_mm_add_epi1
6

N/A N/A N/A A N/A

_mm_add_epi3
2

N/A N/A N/A A N/A

_mm_add_si64 N/A N/A N/A A N/A

_mm_add_epi6
4

N/A N/A N/A A N/A

_mm_adds_epi
8

N/A N/A N/A A N/A

_mm_adds_epi
16

N/A N/A N/A A N/A

_mm_adds_epu
8

N/A N/A N/A A N/A

 267

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_adds_epu
16

N/A N/A N/A A N/A

_mm_avg_epu8 N/A N/A N/A A N/A

_mm_avg_epu1
6

N/A N/A N/A A N/A

_mm_madd_epi
16

N/A N/A N/A A N/A

_mm_max_epi1
6

N/A N/A N/A A N/A

_mm_max_epu8 N/A N/A N/A A N/A

_mm_min_epi1
6

N/A N/A N/A A N/A

_mm_min_epu8 N/A N/A N/A A N/A

_mm_mulhi_ep
i16

N/A N/A N/A A N/A

_mm_mulhi_ep
u16

N/A N/A N/A A N/A

_mm_mullo_ep
i16

N/A N/A N/A A N/A

_mm_mul_su32 N/A N/A N/A A N/A

_mm_mul_epu3
2

N/A N/A N/A A N/A

_mm_sad_epu8 N/A N/A N/A A N/A

_mm_sub_epi8 N/A N/A N/A A N/A

_mm_sub_epi1
6

N/A N/A N/A A N/A

_mm_sub_epi3
2

N/A N/A N/A A N/A

_mm_sub_si64 N/A N/A N/A A N/A

_mm_sub_epi6
4

N/A N/A N/A A N/A

_mm_subs_epi
8

N/A N/A N/A A N/A

_mm_subs_epi
16

N/A N/A N/A A N/A

 268

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_subs_epu
8

N/A N/A N/A A N/A

_mm_subs_epu
16

N/A N/A N/A A N/A

_mm_and_si12
8

N/A N/A N/A A N/A

_mm_andnot_s
i128

N/A N/A N/A A N/A

_mm_or_si128 N/A N/A N/A A N/A

_mm_xor_si12
8

N/A N/A N/A A N/A

_mm_slli_si1
28

N/A N/A N/A A N/A

_mm_slli_epi
16

N/A N/A N/A A N/A

_mm_sll_epi1
6

N/A N/A N/A A N/A

_mm_slli_epi
32

N/A N/A N/A A N/A

_mm_sll_epi3
2

N/A N/A N/A A N/A

_mm_slli_epi
64

N/A N/A N/A A N/A

_mm_sll_epi6
4

N/A N/A N/A A N/A

_mm_srai_epi
16

N/A N/A N/A A N/A

_mm_sra_epi1
6

N/A N/A N/A A N/A

_mm_srai_epi
32

N/A N/A N/A A N/A

_mm_sra_epi3
2

N/A N/A N/A A N/A

_mm_srli_si1
28

N/A N/A N/A A N/A

_mm_srli_epi
16

N/A N/A N/A A N/A

 269

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_srl_epi1
6

N/A N/A N/A A N/A

_mm_srli_epi
32

N/A N/A N/A A N/A

_mm_srl_epi3
2

N/A N/A N/A A N/A

_mm_srli_epi
64

N/A N/A N/A A N/A

_mm_srl_epi6
4

N/A N/A N/A A N/A

_mm_cmpeq_ep
i8

N/A N/A N/A A N/A

_mm_cmpeq_ep
i16

N/A N/A N/A A N/A

_mm_cmpeq_ep
i32

N/A N/A N/A A N/A

_mm_cmpgt_ep
i8

N/A N/A N/A A N/A

_mm_cmpgt_ep
i16

N/A N/A N/A A N/A

_mm_cmpgt_ep
i32

N/A N/A N/A A N/A

_mm_cmplt_ep
i8

N/A N/A N/A A N/A

_mm_cmplt_ep
i16

N/A N/A N/A A N/A

_mm_cmplt_ep
i32

N/A N/A N/A A N/A

_mm_cvtsi32_
si128

N/A N/A N/A A N/A

_mm_cvtsi128
_si32

N/A N/A N/A A N/A

_mm_packs_ep
i16

N/A N/A N/A A N/A

_mm_packs_ep
i32

N/A N/A N/A A N/A

 270

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_packus_e
pi16

N/A N/A N/A A N/A

_mm_extract_
epi16

N/A N/A N/A A N/A

_mm_insert_e
pi16

N/A N/A N/A A N/A

_mm_movemask
_epi8

N/A N/A N/A A N/A

_mm_shuffle_
epi32

N/A N/A N/A A N/A

_mm_shuffleh
i_epi16

N/A N/A N/A A N/A

_mm_shufflel
o_epi16

N/A N/A N/A A N/A

_mm_unpackhi
_epi8

N/A N/A N/A A N/A

_mm_unpackhi
_epi16

N/A N/A N/A A N/A

_mm_unpackhi
_epi32

N/A N/A N/A A N/A

_mm_unpackhi
_epi64

N/A N/A N/A A N/A

_mm_unpacklo
_epi8

N/A N/A N/A A N/A

_mm_unpacklo
_epi16

N/A N/A N/A A N/A

_mm_unpacklo
_epi32

N/A N/A N/A A N/A

_mm_unpacklo
_epi64

N/A N/A N/A A N/A

_mm_move_epi
64

N/A N/A N/A A N/A

_mm_movpi64_
epi64

N/A N/A N/A A N/A

_mm_movepi64
_pi64

N/A N/A N/A A N/A

 271

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_load_si1
28

N/A N/A N/A A N/A

_mm_loadu_si
128

N/A N/A N/A A N/A

_mm_loadl_ep
i64

N/A N/A N/A A N/A

_mm_set_epi6
4

N/A N/A N/A A N/A

_mm_set_epi3
2

N/A N/A N/A A N/A

_mm_set_epi1
6

N/A N/A N/A A N/A

_mm_set_epi8 N/A N/A N/A A N/A

_mm_set1_epi
64

N/A N/A N/A A N/A

_mm_set1_epi
32

N/A N/A N/A A N/A

_mm_set1_epi
16

N/A N/A N/A A N/A

_mm_set1_epi
8

N/A N/A N/A A N/A

_mm_setr_epi
64

N/A N/A N/A A N/A

_mm_setr_epi
32

N/A N/A N/A A N/A

_mm_setr_epi
16

N/A N/A N/A A N/A

_mm_setr_epi
8

N/A N/A N/A A N/A

_mm_setzero_
si128

N/A N/A N/A A N/A

_mm_store_si
128

N/A N/A N/A A N/A

_mm_storeu_s
i128

N/A N/A N/A A N/A

_mm_storel_e
pi64

N/A N/A N/A A N/A

 272

Intrinsic Across
All IA

MMX(TM
Technology

Streaming
SIMD
Extenions

Pentium® 4
Processor
Streaming
SIMD
Extensions 2

Itanium(TM
Architecture

_mm_maskmove
u_si128

N/A N/A N/A A N/A

_mm_stream_p
d

N/A N/A N/A A N/A

_mm_stream_s
i128

N/A N/A N/A A N/A

_mm_clflush N/A N/A N/A A N/A

_mm_lfence N/A N/A N/A A N/A

_mm_mfence N/A N/A N/A A N/A

_mm_stream_s
i32

N/A N/A N/A A N/A

_mm_pause N/A N/A N/A A N/A

 273

Intel C++ Class Libraries
Introduction to the Class Libraries
Welcome to the Class Libraries
The Intel C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle
of SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of
parallel processing is increased data throughput using fewer clock cycles. The objective is to improve
application performance of complex and computation-intensive audio, video, and graphical data bit
streams.

Hardware and Software Requirements
You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the class
libraries. The Intel C++ Class Libraries are functions abstracted from the instruction extensions available
on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Header File Extension Set Available on These Processors

ivec.h MMX(TM) technology Pentium® with MMX(TM) technology, Pentium II, Pentium III, Pentium 4, and
Itanium(TM) processors

fvec.h Streaming SIMD Extensions Pentium III, Pentium 4 and Itanium processors

dve.ch Streaming SIMD Extensions 2 Pentium 4 processor only

About the Classes
The Intel® C++ Class Libraries for SIMD Operations include:

! Integer vector (Ivec) classes

! Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: ivec.h, fvec.h, and dvec.h.
The classes themselves are not partitioned like this. The classes are named according to the underlying
type of operation. The header files are partitioned according to architecture: ivec.h is specific to
architectures with MMX™ technology; fvec.h is specific to architectures with Streaming SIMD
Extensions; dvec.h is specific to architectures with Streaming SIMD Extensions 2. Streaming SIMD
Extensions 2 intrinsics cannot be used on Itanium™-based systems. The mmclass.h header file
includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel Architecture, particularly code
that would benefit from the use of SIMD instructions. You should be familiar with C++ and the use of C++
classes.

 274

Technical Overview
Details About the Libraries
The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class Libraries.
These processor-instruction extensions enable parallel processing using the single instruction-multiple
data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

Performing four operations with a single instruction improves efficiency by a factor of four for that
particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++
SIMD classes. Compare the coding required to add four 32-bit floating-point values, using each of the
available interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class Libraries

... __m128 a,b,c; __asm{
movaps xmm0,b movaps
xmm1,c addps xmm0,xmm1
movaps a, xmm0 } ...

#include <mmintrin.h> ...
__m128 a,b,c; a =
_mm_add_ps(b,c); ...

#include <fvec.h> ...
F32vec4 a,b,c; a = b +c;
...

The table above shows an addition of two single-precision floating-point values using assembly inlining,
intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class
Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the standard
notation in C++, making it much easier to implement over other methods.

 275

C++ Classes and SIMD Operations
The usage of C++ classes for SIMD operations is based on the concept of operating on arrays, or vectors
of data, in parallel. Consider the addition of two vectors, A and B, where each vector contains four
elements. Using the integer vector (Ivec) class, the elements A[i] and B[i] from each array are
summed as shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];
for (i=0; i<4; i++) /* needs four iterations */
c[i] = a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] */

The following example shows the same results using one operation with Ivec Classes.

SIMD Method of Adding Elements Using Ivec Classes

sIs16vec4 ivecA, ivecB, ivec C; /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecC0, ivecC1, ivecC2, ivecC3 */

Available Classes

The Intel® C++ SIMD classes provide parallelism, which is not easily implemented using typical
mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes and
libraries.

SIMD Vector Classes

Instruction Set Class Signedness Data Type Size Elements Header File

MMX(TM) technology (available for
IA-32- and Itanium(TM)-based
systems)

I64vec1 unspecified __m64 64 1 ivec.h

 I32vec2 unspecified int 32 2 ivec.h

 Is32vec2 signed int 32 2 ivec.h

 Iu32vec2 unsigned int 32 2 ivec.h

 I16vec4 unspecified short 16 4 ivec.h

 Is16vec4 signed short 16 4 ivec.h

 Iu16vec4 unsigned short 16 4 ivec.h

 I8vec8 unspecified char 8 8 ivec.h

 Is8vec8 signed char 8 8 ivec.h

 Iu8vec8 unsigned char 8 8 ivec.h

 276

Instruction Set Class Signedness Data Type Size Elements Header File

Streaming SIMD Extensions
(available for IA-32- and Itanium-
based systems)

F32vec4 signed float 32 4 fvec.h

 F32vec1 signed float 32 1 fvec.h

Streaming SIMD Extensions 2
(available for IA-32-based systems
only)

F64vec2 signed double 64 2 dvec.h

 I128vec1 unspecified __m128i 128 1 dvec.h

 I64vec2 unspecified long int 64 4 dvec.h

 Is64vec2 signed long int 64 4 dvec.h

 Iu64vec2 unsigned long int 32 4 dvec.h

 I32vec4 unspecified int 32 4 dvec.h

 Is32vec4 signed int 32 4 dvec.h

 Iu32vec4 unsigned int 32 4 dvec.h

 I16vec8 unspecified int 16 8 dvec.h

 Is16vec8 signed int 16 8 dvec.h

 Iu16vec8 unsigned int 16 8 dvec.h

 I8vec16 unspecified char 8 16 dvec.h

 Is8vec16 signed char 8 16 dvec.h

 Iu8vec16 unsigned char 8 16 dvec.h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor
performance, and are therefore excluded from individual classes.

Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.
(For example, _mm_shuffle_ps, _mm_shuffle_pi16, _mm_extract_pi16, _mm_insert_pi16).

 277

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler. To
enable the classes, use the #include directive in your program file as shown in the table that follows.

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX Technology #include <ivec.h>

Streaming SIMD Extensions #include <fvec.h>

Streaming SIMD Extensions 2 #include <dvec.h>

Each succeeding file from the top down includes the preceding class. You only need to include fvec.h if
you want to use both the Ivec and Fvec classes. Similarly, to use all the classes including those for the
Streaming SIMD Extensions 2, you need only to include the dvec.h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage rules for
each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix MMX instructions,
called by Ivec classes, with Intel x87 architecture floating-point instructions, called by Fvec classes.
Floating-point instructions exist in the following Fvec functions:

fvec constructors

debug functions(cout and element access)

rsqrt_nr

Note

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with
the EMMS instruction intrinsic before issuing an x87 floating-point instruction, as in the following
example.

ivecA = ivecA & ivecB; /* Ivec logical operation that uses MMX instructions */

empty (); /* clear state */

cout << f32vec4a; /* F32vec4 operation that uses x87 floating-point instructions */

Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an
incorrect register state.

 278

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer to this
topic before coding with the Fvec and Ivec classes.

Capabilities
The fundamental capabilities of each C++ SIMD class include:

! computation

! horizontal data motion

! branch compression/elimination

! caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *, /, reciprocal (rcp and rcp_nr), square root (sqrt),
reciprocal square root (rsqrt and rsqrt_nr).

Operations rcp and rsqrt are new approximating instructions with very short latencies that produce
results with at least 12 bits of accuracy. Operations rcp_nr and rsqrt_nr use software refining
techniques to enhance the accuracy of the approximations, with a minimal impact on performance. (The
"nr" stands for Newton-Raphson, a mathematical technique for improving performance using an
approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term "horizontal"
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_horizontal, unpack_low and pack_sat functions are examples of horizontal data support.
This support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the
C++ classes due to their immediate arguments. However, the C++ class implementation enables you to
mix shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd;
fveca += fvecb;
fvecd = _mm_shuffle_ps(fveca,fvecb,0);

Typically every instruction with horizontal data flow contains some inefficiency in the implementation. If
possible, implement your algorithms without using the horizontal capabilities.

 279

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate branches, using
logical operations, max and min functions, conditional selects, and compares. Consider the following
example:

short a[4], b[4], c[4];
for (i=0; i<4; i++)
c[i] = a[i] > b[i] ? a[i] : b[i];

This operation is independent of the value of i. For each i, the result could be either A or B depending on
the actual values. A simple way of removing the branch altogether is to use the select_gt function, as
follows:

Is16vec4 a, b, c
c = select_gt(a, b, a, b)

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize the
effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.
This results in higher performance for data that should be cached.

Integer Vector Classes
Integer Vector Classes
The Ivec classes provide an interface to SIMD processing using integer vectors of various sizes. The
class hierarchy is represented in the following figure.

Ivec Class Hierarchy

 280

The M64 and M128 classes define the __m64 and __m128i data types from which the rest of the Ivec
classes are derived. The first generation of child classes are derived based solely on bit sizes of 128, 64,
32, 16, and 8 respectively for the I128vec1, I64vec1, 164vec2, I32vec2, I32vec4, I16vec4,
I16vec8, I8vec16, and I8vec8 classes. The latter seven of the these classes require specification of
signedness and saturation.

Caution

Do not intermix the M64 and M128 data types. You will get unexpected behavior if you do.

The signedness is indicated by the s and u in the class names:

Is64vec2
Iu64vec2
Is32vec4
Iu32vec4
Is16vec8
Iu16vec8
Is8vec16
Iu8vec16
Is32vec2
Iu32vec2
Is16vec4
Iu16vec4
Is8vec8
Iu8vec8

Terms, Conventions, and Syntax
The following are special terms and syntax used in this chapter to describe functionality of the classes
with respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<type><signedness><bits>vec<elements>

{ F | I } { s | u } { 64 | 32 | 16 | 8 } vec { 8 | 4 | 2 | 1 }

where

type indicates floating point (F) or integer (I)

signedness indicates signed (s) or unsigned (u). For the Ivec class, leaving this field blank indicates an intermediate
class. There are no unsigned Fvec classes, therefore for the Fvec classes, this field is blank.

bits specifies the number of bits per element

elements specifies the number of elements

 281

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and operations
defined in this manual.

! Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the
same size. For example, the nearest common ancestor of Iu8vec8 and Is8vec8 is I8vec8. Also,
the nearest common ancestor between Iu8vec8 and I16vec4 is M64.

! Casting -- Changes the data type from one class to another. When an operation uses different
data types as operands, the return value of the operation must be assigned to a single data type.
Therefore, one or more of the data types must be converted to a required data type. This
conversion is known as a typecast. Sometimes, typecasting is automatic, other times you must
use special syntax to explicitly typecast it yourself.

! Operator Overloading -- This is the ability to use various operators on the same user-defined
data type of a given class. Once you declare a variable, you can add, subtract, multiply, and
perform a range of operations. Each family of classes accepts a specified range of operators, and
must comply by rules and restrictions regarding typecasting and operator overloading as defined
in the header files. The following table shows the notation used in this documention to address
typecasting, operator overloading, and other rules.

Class Syntax Notation Conventions

Class Name Description

I[s|u][N]vec[N] Any value except I128vec1 nor I64vec1

I64vec1 __m64 data type

I[s|u]64vec2 two 64-bit values of any signedness

I[s|u]32vec4 four 32-bit values of any signedness

I[s|u]8vec16 eight 16-bit values of any signedness

I[s|u]16vec8 sixteen 8-bit values of any signedness

I[s|u]32vec2 two 32-bit values of any signedness

I[s|u]16vec4 four 16-bit values of any signedness

I[s|u]8vec8 eight 8-bit values of any signedness

 282

Rules for Operators
To use operators with the Ivec classes you must use one of the following three syntax conventions:

[Ivec_Class] R = [Ivec_Class] A [operator][Ivec_Class] B

Example 1: I64vec1 R = I64vec1 A & I64vec1 B;

[Ivec_Class] R =[operator] ([Ivec_Class] A,[Ivec_Class] B)

Example 2: I64vec1 R = andnot(I64vec1 A, I64vec1 B);

[Ivec_Class] R [operator]= [Ivec_Class] A

Example 3: I64vec1 R &= I64vec1 A;

[operator]an operator (for example, &, |, or ^)

[Ivec_Class]an Ivec class

R, A, B variables declared using the pertinent Ivec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is
illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types
freely and the compiler will do the typecasting for you.

Summary of Rules Major Operators

Operators Sign Typecasting Size Typecasting Other Typecasting
Requirements

Assignment N/A N/A N/A

Logical Automatic Automatic
 (to left)

Explicit typecasting is required
for different types used in non-
logical expressions on the right
side of the assignment.

See Syntax Usage for Logical
Operators example.

Addition and Subtraction Automatic Explicit N/A

Multiplication Automatic Explicit N/A

Shift Automatic Explicit Casting Required to ensure
arithmetic shift.

Compare Automatic Explicit Explicit casting is required for
signed classes for the less-than
or greater-than operations.

Conditional Select Automatic Explicit Explicit casting is required for
signed classes for less-than or
greater-than operations.

 283

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization for all
class sizes. All values are initialized with the most significant element on the left and the least significant
to the right.

Declaration and Initialization Data Types for Ivec Classes

Operation Class Syntax

Declaration M128 I128vec1 A; Iu8vec16 A;

Declaration M64 I64vec1 A; Iu8vec16 A;

__m128 Initialization M128 I128vec1 A(__m128 m);
Iu16vec8(__m128 m);

__m64 Initialization M64 I64vec1 A(__m64 m);Iu8vec8
A(__m64 m);

__int64 Initialization M64 I64vec1 A = __int64 m; Iu8vec8 A
=__int64 m;

int i Initialization M64 I64vec1 A = int i; Iu8vec8 A = int i;

int initialization I32vec2 I32vec2 A(int A1, int A0);
Is32vec2 A(signed int

A1, signed int A0);
Iu32vec2 A(unsigned int

A1, unsigned int A0);

int Initialization) I32vec4 I32vec4 A(short A3, short A2,
short A1, short A0);
Is32vec4 A(signed short

A3, ..., signed short
A0);
Iu32vec4 A(unsigned

short A3, ..., unsigned
short A0);

short int Initialization I16vec4 I16vec4 A(short A3, short A2,
short A1, short A0);
Is16vec4 A(signed short

A3, ..., signed short
A0);
Iu16vec4 A(unsigned

short A3, ..., unsigned
short A0);

short int Initialization I16vec8 I16vec8 A(short A7, short A6, ...,
short A1, short A0);
Is16vec8 A(signed A7,

..., signed short A0);
Iu16vec8 A(unsigned

short A7, ..., unsigned
short A0);

char Initialization I8vec8 I8vec8 A(char A7, char A6, ...,
char A1, char A0);

 284

Operation Class Syntax
Is8vec8 A(signed char

A7, ..., signed char A0);
Iu8vec8 A(unsigned char

A7, ..., unsigned char
A0);

char Initialization I8vec16 I8vec16 A(char A15, ..., char A0);
Is8vec16 A(signed char

A15, ..., signed char
A0);
Iu8vec16 A(unsigned char

A15, ..., unsigned char
A0);

Assignment Operator
Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one Ivec object
to another is automatic.

Assignment Operator Examples

Is16vec4 A;

Is8vec8 B;

I64vec1 C;

A = B; /* assign Is8vec8 to Is16vec4 */

B = C; /* assign I64vec1 to Is8vec8 */

B = A & C; /* assign M64 result of '&' to Is8vec8 */

 285

Logical Operators
The logical operators use the symbols and intrinsics listed in the following table.

Operator Symbols Syntax Usage Bitwise
Operation

Standard w/ assign Standard w/assign Corresponding
Intrinsic

AND & &= R = A & B R &= A _mm_and_si64
_mm_and_si128

OR | |= R = A | B R |= A _mm_and_si64
_mm_and_si128

XOR ^ ^= R = A^B R ^= A _mm_and_si64
_mm_and_si128

ANDNOT andnot N/A R = A andnot B N/A _mm_and_si64
_mm_and_si128

Logical Operators and Miscellaneous Exceptions.

/* A and B converted to M64. Result assigned to Iu8vec8.*/

I64vec1 A;
Is8vec8 B;
Iu8vec8 C;
C = A & B;

/* Same size and signedness operators return the nearest common ancestor.*/

I32vec2 R = Is32vec2 A ^ Iu32vec2 B;

/* A&B returns M64, which is cast to Iu8vec8.*/

C = Iu8vec8(A&B)+ C;

When A and B are of the same class, they return the same type. When A and B are of different classes,
the return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply when
A and B are of different classes.

Ivec Logical Operator Overloading

Return (R) AND OR XOR NAND A Operand B Operand

I64vec1 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I64vec2 R & | ^ andnot I[s|u]64vec2 A I[s|u]64vec2 B

I32vec2 R & | ^ andnot I[s|u]32vec2 A I[s|u]32vec2 B

 286

Return (R) AND OR XOR NAND A Operand B Operand

I32vec4 R & | ^ andnot I[s|u]32vec4 A I[s|u]32vec4 B

I16vec4 R & | ^ andnot I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R & | ^ andnot I[s|u]16vec8 A I[s|u]16vec8 B

I8vec8 R & | ^ andnot I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R & | ^ andnot I[s|u]8vec16 A I[s|u]8vec16 B

For logical operators with assignment, the return value of R is always the same data type as the pre-
declared value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type Left Side (R) AND OR XOR Right Side (Any Ivec Type)

I128vec1 I128vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec1 I64vec1 R &= |= ^= I[s|u][N]vec[N] A;

I64vec2 I64vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec4 I[x]32vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]32vec2 I[x]32vec2 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec8 I[x]16vec8 R &= |= ^= I[s|u][N]vec[N] A;

I[x]16vec4 I[x]16vec4 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec16 I[x]8vec16 R &= |= ^= I[s|u][N]vec[N] A;

I[x]8vec8 I[x]8vec8 R &= |= ^= I[s|u][N]vec[N] A;

Addition and Subtraction Operators
The addition and subtraction operators return the class of the nearest common ancestor when the right-
side operands are of different signs. The following code provides examples of usage and miscellaneous
exceptions.

Syntax Usage for Addition and Subtraction Operators

/* Return nearest common ancestor type, I16vec4 */

Is16vec4 A;

Iu16vec4 B;

 287

I16vec4 C;

C = A + B;

/* Returns type left-hand operand type */

Is16vec4 A;

Iu16vec4 B;

A += B;

B -= A;

/* Explicitly convert B to Is16vec4 */

Is16vec4 A,C;

Iu32vec24 B;

C = A + C;

C = A + (Is16vec4)B;

Addition and Subtraction Operators with Corresponding Intrinsics

Operation Symbols Syntax Corresponding Intrinsics

Addition +
+=

R = A + B
R += A

_mm_add_epi64
_mm_add_epi32
_mm_add_epi16
_mm_add_epi8
_mm_add_pi32
_mm_add_pi16
_mm_add_pi8

Subtraction -
-=

R = A - B
R -= A

_mm_sub_epi64
_mm_sub_epi32
_mm_sub_epi16
_mm_sub_epi8
_mm_sub_pi32
_mm_sub_pi16
_mm_sub_pi8

 288

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

Addition and Subtraction Operator Overloading

Return Value (R) Available Operators Right Side Operands

 Add Sub A B

I64vec2 R + - I[s|u]64vec2 A I[s|u]64vec2 B

I32vec4 R + - I[s|u]32vec4 A I[s|u]32vec4 B

I32vec2 R + - I[s|u]32vec2 A I[s|u]32vec2 B

I16vec8 R + - I[s|u]16vec8 A I[s|u]16vec8 B

I16vec4 R + - I[s|u]16vec4 A I[s|u]16vec4 B

I8vec8 R + - I[s|u]8vec8 A I[s|u]8vec8 B

I8vec16 R + - I[s|u]8vec2 A I[s|u]8vec16 B

The following table shows the return data type values for operands of the addition and subtraction
operators with assignment. The left side operand determines the size and signedness of the return value.
The right side operand must be the same size as the left operand; otherwise, you must use an explicit
typecast.

Addition and Subtraction with Assignment

Return Value (R) Left Side (R) Add Sub Right Side (A)

I[x]32vec4 I[x]32vec2 R += -= I[s|u]32vec4 A;

I[x]32vec2 R I[x]32vec2 R += -= I[s|u]32vec2 A;

I[x]16vec8 I[x]16vec8 += -= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 += -= I[s|u]16vec4 A;

I[x]8vec16 I[x]8vec16 += -= I[s|u]8vec16 A;

I[x]8vec8 I[x]8vec8 += -= I[s|u]8vec8 A;

 289

Multiplication Operators
The multiplication operators can only accept and return data types from the I[s|u]16vec4 or
I[s|u]16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators

/* Explicitly convert B to Is16vec4 */

Is16vec4 A,C;

Iu32vec2 B;

C = A * C;

C = A * (Is16vec4)B;

/* Return nearest common ancestor type, I16vec4 */

Is16vec4 A;

Iu16vec4 B;

I16vec4 C;

C = A + B;

/* The mul_high and mul_add functions take Is16vec4 data only */

Is16vec4 A,B,C,D;

C = mul_high(A,B);

D = mul_add(A,B);

 290

Multiplication Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

* *= R = A * B
R *= A

 _mm_mullo_pi16
_mm_mullo_epi16

 mul_high N/A R = mul_high(A, B) _mm_mulhi_pi16
_mm_mulhi_epi16

Multiplication

 mul_add N/A R = mul_high(A, B) _mm_madd_pi16
_mm_madd_epi16

The multiplication return operators always return the nearest common ancestor as listed in the table that
follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Multiplication Operator Overloading

R Mul A B

I16vec4 R * I[s|u]16vec4 A I[s|u]16vec4 B

I16vec8 R * I[s|u]16vec8 A I[s|u]16vec8 B

Is16vec4 R mul_add Is16vec4 A Is16vec4 B

Is16vec8 mul_add Is16vec8 A Is16vec8 B

Is32vec2 R mul_high Is16vec4 A Is16vec4 B

Is32vec4 R mul_high s16vec8 A Is16vec8 B

The following table shows the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size,
you must use an explicit typecast.

Multiplication with Assignment

Return Value (R) Left Side (R) Mul Right Side (A)

I[x]16vec8 I[x]16vec8 *= I[s|u]16vec8 A;

I[x]16vec4 I[x]16vec4 *= I[s|u]16vec4 A;

 291

Shift Operators
The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type.
The first or left operand of a << can be of any type except I[s|u]8vec[8|16]

Example Syntax Usage for Shift Operators

/* Automatic size and sign conversion */

Is16vec4 A,C;

Iu32vec2 B;

C = A;

/* A&B returns I16vec4, which must be cast to Iu16vec4

to ensure logical shift, not arithmetic shift */

Is16vec4 A, C;

Iu16vec4 B, R;

R = (Iu16vec4)(A & B) C;

/* A&B returns I16vec4, which must be cast to Is16vec4

to ensure arithmetic shift, not logical shift */

R = (Is16vec4)(A & B) C;

Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic

Shift Left <<
&=

R = A << B
R &= A

_mm_sll_si64
_mm_slli_si64
_mm_sll_pi32
_mm_slli_pi32
_mm_sll_pi16
_mm_slli_pi16

Shift Right >> R = A >> B
R >>= A

_mm_srl_si64
_mm_srli_si64
_mm_srl_pi32
_mm_srli_pi32
_mm_srl_pi16
_mm_srli_pi16
_mm_sra_pi32
_mm_srai_pi32
_mm_sra_pi16
_mm_srai_pi16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The table below shows how the return type is determined by the first
argument type.

 292

Shift Operator Overloading

Operation R Right Shift Left Shift A B

Logical I64vec1 >> >>= << <<= I64vec1 A; I64vec1 B;

Logical I32vec2 >> >>= << <<= I32vec2 A I32vec2 B;

Arithmetic Is32vec2 >> >>= << <<= Is32vec2 A I[s|u][N]vec[N] B;

Logical Iu32vec2 >> >>= << <<= Iu32vec2 A I[s|u][N]vec[N] B;

Logical I16vec4 >> >>= << <<= I16vec4 A I16vec4 B

Arithmetic Is16vec4 >> >>= << <<= Is16vec4 A I[s|u][N]vec[N] B;

Logical Iu16vec4 >> >>= << <<= Iu16vec4 A I[s|u][N]vec[N] B;

Comparison Operators
The equality and inequality comparison operands can have mixed signedness, but they must be of the
same size. The comparison operators for less-than and greater-than must be of the same sign and size.

Example of Syntax Usage for Comparison Operator

/* The nearest common ancestor is returned for compare

for equal/not-equal operations */

Iu8vec8 A;

Is8vec8 B;

I8vec8 C;

C = cmpneq(A,B);

/* Type cast needed for different-sized elements for

equal/not-equal comparisons */

Iu8vec8 A, C;

Is16vec4 B;

C = cmpeq(A,(Iu8vec8)B);

/* Type cast needed for sign or size differences for

less-than and greater-than comparisons */

Iu16vec4 A;

 293

Is16vec4 B, C;

C = cmpge((Is16vec4)A,B);

C = cmpgt(B,C);

Inequality Comparison Symbols and Corresponding Intrinsics

Compare For Operators Syntax Intrinsic

Equality cmpeq R = cmpeq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Inequality cmpneq R = cmpneq(A, B) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

_mm_andnot_si64

Greater Than cmpgt R = cmpgt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
or Equal To

cmpge R = cmpge(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

_mm_andnot_si64

Less Than cmplt R = cmplt(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Less Than
or Equal To

cmple R = cmple(A, B) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

_mm_andnot_si64

Comparison operators have the restriction that the operands must be the size and sign as listed in the
Compare Operator Overloading table.

Compare Operator Overloading

R Comparison A B

I32vec2 R I[s|u]32vec2 B I[s|u]32vec2 B

I16vec4 R I[s|u]16vec4 B I[s|u]16vec4 B

I8vec8 R

cmpeq
cmpne

I[s|u]8vec8 B I[s|u]8vec8 B

I32vec2 R Is32vec2 B Is32vec2 B

I16vec4 R Is16vec4 B Is16vec4 B

I8vec8 R

cmpgt
cmpge
cmplt
cmple

Is8vec8 B Is8vec8 B

 294

Conditional Select Operators
For conditional select operands, the third and fourth operands determine the type returned. Third and
fourth operands with same size, but different signedness, return the nearest common ancestor data type.

Conditional Select Syntax Usage

/* Return the nearest common ancestor data type if third and fourth

operands are of the same size, but different signs */

I16vec4 R = select_neq(Is16vec4, Is16vec4, Is16vec4, Iu16vec4);

/* Conditional Select for Equality */

R0 := (A0 == B0) ? C0 : D0;

R1 := (A1 == B1) ? C1 : D1;

R2 := (A2 == B2) ? C2 : D2;

R3 := (A3 == B3) ? C3 : D3;

/* Conditional Select for Inequality */

R0 := (A0 != B0) ? C0 : D0;

R1 := (A1 != B1) ? C1 : D1;

R2 := (A2 != B2) ? C2 : D2;

R3 := (A3 != B3) ? C3 : D3;

Conditional Select Symbols and Corresponding Intrinsics

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional Intrinsic
(Applies to All)

Equality select_eq R = select_eq(A, B, C, D) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Inequality select_neq R = select_neq(A, B, C, D) _mm_cmpeq_pi32
_mm_cmpeq_pi16
_mm_cmpeq_pi8

Greater Than select_gt R = select_gt(A, B, C, D) _mm_cmpgt_pi32
_mm_cmpgt_pi16
_mm_cmpgt_pi8

Greater Than
 or Equal To

select_ge R = select_gt(A, B, C, D) _mm_cmpge_pi32
_mm_cmpge_pi16
_mm_cmpge_pi8

_mm_and_si64
_mm_or_si64
_mm_andnot_si64

 295

Conditional
Select For:

Operators Syntax Corresponding
Intrinsic

Additional Intrinsic
(Applies to All)

Less Than select_lt R = select_lt(A, B, C, D) _mm_cmplt_pi32
_mm_cmplt_pi16
_mm_cmplt_pi8

Less Than
 or Equal To

select_le R = select_le(A, B, C, D) _mm_cmple_pi32
_mm_cmple_pi16
_mm_cmple_pi8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than
operations, the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison A and B C D

I32vec2 R I[s|u]32vec2 I[s|u]32vec2 I[s|u]32vec2

I16vec4 R I[s|u]16vec4 I[s|u]16vec4 I[s|u]16vec4

I8vec8 R

select_eq
select_ne

I[s|u]8vec8 I[s|u]8vec8 I[s|u]8vec8

I32vec2 R Is32vec2 Is32vec2 Is32vec2

I16vec4 R Is16vec4 Is16vec4 Is16vec4

I8vec8 R

select_gt
select_ge
select_lt
select_le

Is8vec8 Is8vec8 Is8vec8

The table below shows the mapping of return values from R0 to R7 for any number of elements. The
same return value mappings also apply when there are fewer than four return values.

 296

Conditional Select Operator Return Value Mapping

A and B Operands Return
Value

A0 Available Operators B0

C and D Operands

R0:= A0 == != > >= < <= B0 ? C0 : D0;

R1:= A0 == != > >= < <= B0 ? C1 : D1;

R2:= A0 == != > >= < <= B0 ? C2 : D2;

R3:= A0 == != > >= < <= B0 ? C3 : D3;

R4:= A0 == != > >= < <= B0 ? C4 : D4;

R5:= A0 == != > >= < <= B0 ? C5 : D5;

R6:= A0 == != > >= < <= B0 ? C6 : D6;

R7:= A0 == != > >= < <= B0 ? C7 : D7;

Debug
The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are provided
for debugging programs only. Use of these operations may result in loss of performance, so you should
not use them outside of debugging.

Output

cout << Is32vec4 A;

cout << Iu32vec4 A;

cout << hex << Iu32vec4 A; /* print in hex format */

The four 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is32vec2 A;

cout << Iu32vec2 A;

cout << hex << Iu32vec2 A; /* print in hex format */

 297

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is16vec8 A;

cout << Iu16vec8 A;

cout << hex << Iu16vec8 A; /* print in hex format */

The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is16vec4 A;

cout << Iu16vec4 A;

cout << hex << Iu16vec4 A; /* print in hex format */

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is8vec16 A; cout << Iu8vec16 A; cout << hex << Iu8vec8 A;

/* print in hex format instead of decimal*/

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8 [7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3
[2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << Is8vec8 A; cout << Iu8vec8 A;cout << hex << Iu8vec8 A;

/* print in hex format instead of decimal*/

 298

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

Element Access Operators

int R = Is64vec2 A[i];

unsigned int R = Iu64vec2 A[i];

int R = Is32vec4 A[i];

unsigned int R = Iu32vec4 A[i];

int R = Is32vec2 A[i];

unsigned int R = Iu32vec2 A[i];

short R = Is16vec8 A[i];

unsigned short R = Iu16vec8 A[i];

short R = Is16vec4 A[i];

unsigned short R = Iu16vec4 A[i];

signed char R = Is8vec16 A[i];

unsigned char R = Iu8vec16 A[i];

signed char R = Is8vec8 A[i];

unsigned char R = Iu8vec8 A[i];

Access and read element i of A. If DEBUG is enabled and the user tries to access an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators

Is64vec2 A[i] = int R;

Is32vec4 A[i] = int R;

Iu32vec4 A[i] = unsigned int R;

Is32vec2 A[i] = int R;

Iu32vec2 A[i] = unsigned int R;

Is16vec8 A[i] = short R;

Iu16vec8 A[i] = unsigned short R;

 299

Is16vec4 A[i] = short R;

Iu16vec4 A[i] = unsigned short R;

Is8vec16 A[i] = signed char R;

Iu8vec16 A[i] = unsigned char R;

Is8vec8 A[i] = signed char R;

Iu8vec8 A[i] = unsigned char R;

Assign R to element i of A. If DEBUG is enabled and the user tries to assign a value to an element outside
of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators
I364vec2 unpack_high(I64vec2 A, I64vec2 B)

Is64vec2 unpack_high(Is64vec2 A, Is64vec2 B)

Iu64vec2 unpack_high(Iu64vec2 A, Iu64vec2 B)

Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.

R0 = A1;

R1 = B1;

Corresponding intrinsic: _mm_unpackhi_epi64

I32vec4 unpack_high(I32vec4 A, I32vec4 B)

Is32vec4 unpack_high(Is32vec4 A, Is32vec4 B)

Iu32vec4 unpack_high(Iu32vec4 A, Iu32vec4 B)

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B .

R0 = A1;

R1 = B1;

R2 = A2;

R3 = B2;

Corresponding intrinsic: _mm_unpackhi_epi32

I32vec2 unpack_high(I32vec2 A, I32vec2 B)

Is32vec2 unpack_high(Is32vec2 A, Is32vec2 B)

Iu32vec2 unpack_high(Iu32vec2 A, Iu32vec2 B)

 300

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.

R0 = A1;

R1 = B1;

Corresponding intrinsic: _mm_unpackhi_pi32

I16vec8 unpack_high(I16vec8 A, I16vec8 B)

Is16vec8 unpack_high(Is16vec8 A, Is16vec8 B)

Iu16vec8 unpack_high(Iu16vec8 A, Iu16vec8 B)

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B.

R0 = A2;

R1 = B2;R2 = A3;

R3 = B3;

Corresponding intrinsic: _mm_unpackhi_epi16

I16vec4 unpack_high(I16vec4 A, I16vec4 B)

Is16vec4 unpack_high(Is16vec4 A, Is16vec4 B)

Iu16vec4 unpack_high(Iu16vec4 A, Iu16vec4 B)

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B.

R0 = A2;R1 = B2;

R2 = A3;R3 = B3;

Corresponding intrinsic: _mm_unpackhi_pi16

I8vec8 unpack_high(I8vec8 A, I8vec8 B)

Is8vec8 unpack_high(Is8vec8 A, I8vec8 B)

Iu8vec8 unpack_high(Iu8vec8 A, I8vec8 B)

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.

R0 = A4;

R1 = B4;

R2 = A5;

R3 = B5;

R4 = A6;

R5 = B6;

 301

R6 = A7;

R7 = B7;

Corresponding intrinsic: _mm_unpackhi_pi8

I8vec16 unpack_high(I8vec16 A, I8vec16 B)

Is8vec16 unpack_high(Is8vec16 A, I8vec16 B)

Iu8vec16 unpack_high(Iu8vec16 A, I8vec16 B)

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of B.

R0 = A8;

R1 = B8;

R2 = A9;

R3 = B9;

R4 = A10;

R5 = B10;

R6 = A11;

R7 = B11;

R8 = A12;

R8 = B12;

R2 = A13;

R3 = B13;

R4 = A14;

R5 = B14;

R6 = A15;

R7 = B15;

Corresponding intrinsic: _mm_unpackhi_epi16

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

R0 = A0;

R1 = B0;

Corresponding intrinsic: _mm_unpacklo_epi32

I64vec2 unpack_low(I64vec2 A, I64vec2 B);

Is64vec2 unpack_low(Is64vec2 A, Is64vec2 B);

 302

Iu64vec2 unpack_low(Iu64vec2 A, Iu64vec2 B);

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

I32vec4 unpack_low(I32vec4 A, I32vec4 B);

Is32vec4 unpack_low(Is32vec4 A, Is32vec4 B);

Iu32vec4 unpack_low(Iu32vec4 A, Iu32vec4 B);

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B.

R0 = A0;R1 = B0;

R2 = A1;R3 = B1;

Corresponding intrinsic: _mm_unpacklo_epi32

I32vec2 unpack_low(I32vec2 A, I32vec2 B);

Is32vec2 unpack_low(Is32vec2 A, Is32vec2 B);

Iu32vec2 unpack_low(Iu32vec2 A, Iu32vec2 B);

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.

R0 = A0;

R1 = B0;

Corresponding intrinsic: _mm_unpacklo_pi32

I16vec8 unpack_low(I16vec8 A, I16vec8 B);

Is16vec8 unpack_low(Is16vec8 A, Is16vec8 B);

Iu16vec8 unpack_low(Iu16vec8 A, Iu16vec8 B);

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

 303

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

Corresponding intrinsic: _mm_unpacklo_epi16

I16vec4 unpack_low(I16vec4 A, I16vec4 B);

Is16vec4 unpack_low(Is16vec4 A, Is16vec4 B);

Iu16vec4 unpack_low(Iu16vec4 A, Iu16vec4 B);

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

Corresponding intrinsic: _mm_unpacklo_pi16

I8vec16 unpack_low(I8vec16 A, I8vec16 B);

Is8vec16 unpack_low(Is8vec16 A, Is8vec16 B);

Iu8vec16 unpack_low(Iu8vec16 A, Iu8vec16 B);

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

R8 = A4;

R9 = B4;

R10 = A5;

R11 = B5;

 304

R12 = A6;

R13 = B6;

R14 = A7;

R15 = B7;

Corresponding intrinsic: _mm_unpacklo_epi8

I8vec8 unpack_low(I8vec8 A, I8vec8 B);

Is8vec8 unpack_low(Is8vec8 A, Is8vec8 B);

Iu8vec8 unpack_low(Iu8vec8 A, Iu8vec8 B);

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

R0 = A0;

R1 = B0;

R2 = A1;

R3 = B1;

R4 = A2;

R5 = B2;

R6 = A3;

R7 = B3;

Corresponding intrinsic: _mm_unpacklo_pi8

 305

Pack Operators
Is16vec8 pack_sat(Is32vec2 A,Is32vec2 B);

Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_epi32

Is16vec4 pack_sat(Is32vec2 A,Is32vec2 B);

Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_pi32

Is8vec16 pack_sat(Is16vec4 A,Is16vec4 B);

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_epi16

Is8vec8 pack_sat(Is16vec4 A,Is16vec4 B);

Pack the eight 16-bit values found in A and B into eight 8-bit values with signed saturation.

Corresponding intrinsic: _mm_packs_pi16

Iu8vec16 packu_sat(Is16vec4 A,Is16vec4 B);

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

Corresponding intrinsic: _mm_packus_epi16

Iu8vec8 packu_sat(Is16vec4 A,Is16vec4 B);

Pack the eight 16-bit values found in A and B into eight 8-bit values with unsigned saturation.

Corresponding intrinsic: _mm_packs_pu16

Clear MMX(TM) Instructions State Operator
void empty(void);

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the EMMS
instruction intrinsic.

Corresponding intrinsic: _mm_empty

 306

Integer Intrinsics for Streaming SIMD Extensions

Note

You must include fvec.h header file for the following functionality.

Is16vec4 simd_max(Is16vec4 A, Is16vec4 B);

Compute the element-wise maximum of the respective signed integer words in A and B.

Corresponding intrinsic: _mm_max_pi16

Is16vec4 simd_min(Is16vec4 A, Is16vec4 B);

Compute the element-wise minimum of the respective signed integer words in A and B.

Corresponding intrinsic: _mm_min_pi16

Iu8vec8 simd_max(Iu8vec8 A, Iu8vec8 B);

Compute the element-wise maximum of the respective unsigned bytes in A and B.

Corresponding intrinsic: _mm_max_pu8

Iu8vec8 simd_min(Iu8vec8 A, Iu8vec8 B);

Compute the element-wise minimum of the respective unsigned bytes in A and B.

Corresponding intrinsic: _mm_min_pu8

int move_mask(I8vec8 A);

Create an 8-bit mask from the most significant bits of the bytes in A.

Corresponding intrinsic: _mm_movemask_pi8

void mask_move(I8vec8 A, I8vec8 B, signed char *p);

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored.

Corresponding intrinsic: _mm_maskmove_si64

void store_nta(__m64 *p, M64 A);

 307

Store the data in A to the address p without polluting the caches. A can be any Ivec type.

Corresponding intrinsic: _mm_stream_pi

Iu8vec8 simd_avg(Iu8vec8 A, Iu8vec8 B);

Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

Corresponding intrinsic: _mm_avg_pu8

Iu16vec4 simd_avg(Iu16vec4 A, Iu16vec4 B);

Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

Corresponding intrinsic: _mm_avg_pu16

Conversions Between Fvec and Ivec
int F64vec2ToInt(F64vec42 A)

Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

r := (int)A0

F64vec2 F32vec4ToF64vec2(F32vec4 A)

Convert the four floating-point values of A to two the tow least significant double-precision floating-point
values.

r0 := (double)A0;

r1 := (double)A1;

F32vec4 F64vec2ToF32vec4(F64vec2 A)

Convert the two double-precision floating-point values of A to two single-precision floating-point values.

r0 := (float)A0;

r1 := (float)A1;

F64vec2 InttoF64vec2(F64vec2 A, int B)

Convert the signed int in B to a double-precision floating-point value and pass the upper double-
precision. value from A through to the result.

r0 := (double)B;

r1 := A1;

 308

int F32vec4ToInt(F32vec4 A)

Convert the lower floating-point value of A to a 32-bit integer with truncation.

r := (int)A0

Is32vec2 F32vec4ToIs32vec2 (F32vec4 A)

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the integers
in packed form.

r0 := (int)A0

r1 := (int)A1

F32vec4 IntToF32vec4(F32vec4 A, int B)

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are
passed through from A.

r0 := (float)B

r1 := A1;

r2 := A2 ;

r3 := A3

F32vec4 Is32vec2ToF32vec4(F32vec4 A, Is32vec2 B)

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

r0 := (float)B0

r1 := (float)B1

r2 := A2

r3 := A3

 309

Floating-point Vector Classes
Floating-point Vector Classes
The floating-point vector classes (Fvec), F64vec2, F32vec4, and F32vec1, provide an interface to SIMD
operations. The class specifications are as follows:

F64vec2 A(double x, double y);

F32vec4 A(float z, float y, float x, float w);

F32vec1 B(float w);

The packed floating-point input values are represented with the right-most value lowest as shown in the
following table.

Single-Precision Floating-point Elements

 310

Fvec Notation Conventions
This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation

Fvec classes use the syntax conventions shown the following examples:

[Fvec_Class] R = [Fvec_Class] A [operator][Ivec_Class] B;

Example 1:F64vec2 R = F64vec2 A & F64vec2 B;

[Fvec_Class] R = [operator]([Fvec_Class] A,[Fvec_Class] B);

Example 2:F64vec2 R = andnot(F64vec2 A, F64vec2 B);

[Fvec_Class] R [operator]= [Fvec_Class] A;

Example 3:F64vec2 R &= F64vec2 A;

where

[operator] is an operator (for example, &, |, or ^)

[Fvec_Class] is any Fvec class (F64vec2, F32vec4, or F32vec1)

R, A, B are declared Fvec variables of the type indicated

Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the conventions
presented in the Return Value Convention Notation Mappings table below. F32vec4 returns four single-
precision, floating-point values (R0, R1, R2, and R3); F64vec2 returns two double-precision, floating-point
values, and F32vec1 returns the lowest single-precision floating-point value (R0).

Return Value Convention Notation Mappings

Example 1: Example 2: Example 3: F32vec4 F64vec2 F32vec1

R0 := A0 & B0; R0 := A0
andnot B0;

R0 &= A0; x x x

R1 := A1 & B1; R1 := A1
andnot B1;

R1 &= A1; x x N/A

R2 := A2 & B2; R2 := A2
andnot B2;

R2 &= A2; x N/A N/A

R3 := A3 & B3 R3 := A3
andhot B3;

R3 &= A3; x N/A N/A

 311

Data Alignment
Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-aligned data
whenever possible.

F32vec4 and F64vec2 object variables are properly aligned by default. Note that floating point arrays
are not automatically aligned. To get 16-byte alignment, you can use the alignment __declspec.

__declspec(align(16)) float A[4];

Conversions

__m128d mm = A & B; /* where A,B are F64vec2 object variables */

__m128 mm = A & B; /* where A,B are F32vec4 object variables */

__m128 mm = A & B; /* where A,B are F32vec1 object variables */

All Fvec object variables can be implicitly converted to __m128 data types. For example, the results of
computations performed on F32vec4 or F32vec1 object variables can be assigned to __m128 data
types.

Constructors and Initialization
The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec2 A;
F32vec4 B;
F32vec1 C;

N/A N/A

__m128 Object Initialization

F64vec2 A(__m128d mm);
F32vec4 B(__m128 mm);
F32vec1 C(__m128 mm);

N/A N/A

Double Initialization

/* Initializes two doubles. */
F64vec2 A(double d0, double d1);
F64vec2 A = F64vec2(double d0, double d1);

_mm_set_pd A0 := d0;
A1 := d1;

F64vec2 A(double d0);
/* Initializes both return values with the same double
precision value */.

_mm_set1_pd A0 := d0;
A1 := d0;

Float Initialization

 312

Example Intrinsic Returns

F32vec4 A(float f3, float f2, float f1, float f0);

F32vec4 A = F32vec4(float f3, float f2, float f1,
float f0);

_mm_set_ps A0 := f0;
A1 := f1;
A2 := f2;
A3 := f3;

F32vec4 A(float f0);
/* Initializes all return values with the same
floating point value. */

_mm_set1_ps A0 := f0;
A1 := f0;
A2 := f0;
A3 := f0;

F32vec4 A(double d0);
/* Initialize all return values with the same double-
precision value. */

_mm_set1_ps(d) A0 := d0;
A1 := d0;
A2 := d0;
A3 := d0;

F32vec1 A(double d0);
/* Initializes the lowest value of A with d0 and the
other values with 0.*/

_mm_set_ss(d) A0 := d0;
A1 := 0;
A2 := 0;
A3 := 0;

F32vec1 B(float f0);
/* Initializes the lowest value of B with f0 and the
other values with 0.*/

_mm_set_ss B0 := f0;
B1 := 0;
B2 := 0;
B3 := 0;

F32vec1 B(int I);
/* Initializes the lowest value of B with
f0, other values are undefined.*/

_mm_cvtsi32_ss B0 := f0;
B1 := {}
B2 := {}
B3 := {}

Arithmetic Operators
The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators
have been divided into standard and advanced operations, which are described in more detail later in this
section.

Fvec Arithmetic Operators

Category Operation Operators Generic Syntax

Addition +
+=

R = A + B;
R += A;

Subtraction -
-=

R = A - B;
R -= A;

Multiplication *
*=

R = A * B;
R *= A;

Standard

Division /
/=

R = A / B;
R /= A;

 313

Square Root sqrt R = sqrt(A);

Reciprocal (Newton-Raphson) rcp
rcp_nr

R = rcp(A);
R = rcp_nr(A);

Advanced

Reciprocal Square Root (Newton-Raphson) rsqrt
rsqrt_nr

R = rsqrt(A);
R = rsqrt_nr(A);

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A Operators B F32vec4 F64vec2 F32vec1

R0:= A0 + - * / B0

R1:= A1 + - * / B1 N/A

R2:= A2 + - * / B2 N/A N/A

R3:= A3 + - * / B3 N/A N/A

Arithmetic with Assignment Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= += -= *= /= A0

R1:= += -= *= /= A1 N/A

R2:= += -= *= /= A2 N/A N/A

R3:= += -= *= /= A3 N/A N/A

The table below lists standard arithmetic operator syntax and intrinsics.

Standard Arithmetic Operations for Fvec Classes

Operation Returns Example Syntax Usage Intrinsic

Addition 4 floats F32vec4 R = F32vec4 A + F32vec4 B;
F32vec4 R += F32vec4 A;

_mm_add_ps

 2 doubles F64vec2 R = F64vec2 A + F32vec2 B;
F64vec2 R += F64vec2 A;

_mm_add_pd

 1 float F32vec1 R = F32vec1 A + F32vec1 B;
F32vec1 R += F32vec1 A;

_mm_add_ss

Subtraction 4 floats F32vec4 R = F32vec4 A - F32vec4 B;
F32vec4 R -= F32vec4 A;

_mm_sub_ps

 314

Operation Returns Example Syntax Usage Intrinsic

 2 doubles F64vec2 R - F64vec2 A + F32vec2 B;
F64vec2 R -= F64vec2 A;

_mm_sub_pd

 1 float F32vec1 R = F32vec1 A - F32vec1 B;
F32vec1 R -= F32vec1 A;

_mm_sub_ss

Multiplication 4 floats F32vec4 R = F32vec4 A * F32vec4 B;
F32vec4 R *= F32vec4 A;

_mm_mul_ps

 2 doubles F64vec2 R = F64vec2 A * F364vec2 B;
F64vec2 R *= F64vec2 A;

_mm_mul_pd

 1 float F32vec1 R = F32vec1 A * F32vec1 B;
F32vec1 R *= F32vec1 A;

_mm_mul_ss

Division 4 floats F32vec4 R = F32vec4 A / F32vec4 B;
F32vec4 R /= F32vec4 A;

_mm_div_ps

 2 doubles F64vec2 R = F64vec2 A / F64vec2 B;
F64vec2 R /= F64vec2 A;

_mm_div_pd

 1 float F32vec1 R = F32vec1 A / F32vec1 B;
F32vec1 R /= F32vec1 A;

_mm_div_ss

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which use the
syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A F32vec4 F64vec2 F32vec1

R0:= sqrt rcp rsqrt rcp_nr rsqrt_nr A0

R1:= sqrt rcp rsqrt rcp_nr rsqrt_nr A1 N/A

R2:= sqrt rcp rsqrt rcp_nr rsqrt_nr A2 N/A N/A

R3:= sqrt rcp rsqrt rcp_nr rsqrt_nr A3 N/A N/A

f := add_horizontal (A0 + A1 + A2 + A3) N/A N/A

d := add_horizontal (A0 + A1) N/A N/A

The table below shows examples for advanced arithmetic operators.

 315

Advanced Arithmetic Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vec4 A); _mm_sqrt_ps

2 doubles F64vec2 R = sqrt(F64vec2 A); _mm_sqrt_pd

1 float F32vec1 R = sqrt(F32vec1 A); _mm_sqrt_ss

Reciprocal

4 floats F32vec4 R = rcp(F32vec4 A); _mm_rcp_ps

2 doubles F64vec2 R = rcp(F64vec2 A); _mm_rcp_pd

1 float F32vec1 R = rcp(F32vec1 A); _mm_rcp_ss

Reciprocal Square Root

4 floats F32vec4 R = rsqrt(F32vec4 A); _mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt(F64vec2 A); _mm_rsqrt_pd

1 float F32vec1 R = rsqrt(F32vec1 A); _mm_rsqrt_ss

Reciprocal Newton Raphson

4 floats F32vec4 R = rcp_nr(F32vec4 A); _mm_sub_ps
_mm_add_ps
_mm_mul_ps
_mm_rcp_ps

2 doubles F64vec2 R = rcp_nr(F64vec2 A); _mm_sub_pd
_mm_add_pd
_mm_mul_pd
_mm_rcp_pd

1 float F32vec1 R = rcp_nr(F32vec1 A); _mm_sub_ss
_mm_add_ss
_mm_mul_ss
_mm_rcp_ss

Reciprocal Square Root Newton Raphson

4 float F32vec4 R = rsqrt_nr(F32vec4 A); _mm_sub_pd
_mm_mul_pd
_mm_rsqrt_ps

2 doubles F64vec2 R = rsqrt_nr(F64vec2 A); _mm_sub_pd
_mm_mul_pd
_mm_rsqrt_pd

 316

Returns Example Syntax Usage Intrinsic

1 float F32vec1 R = rsqrt_nr(F32vec1 A); _mm_sub_ss
_mm_mul_ss
_mm_rsqrt_ss

Horizontal Add

1 float float f = add_horizontal(F32vec4 A); _mm_add_ss
_mm_shuffle_ss

1 double double d = add_horizontal(F64vec2 A); _mm_add_sd
_mm_shuffle_sd

Minimum and Maximum Operators
F64vec2 R = simd_min(F64vec2 A, F64vec2 B)

Compute the minimums of the two double precision floating-point values of A and B.

R0 := min(A0,B0);

R1 := min(A1,B1);

Corresponding intrinsic: _mm_min_pd

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)

Compute the minimums of the four single precision floating-point values of A and B.

R0 := min(A0,B0);

R1 := min(A1,B1);

R2 := min(A2,B2);

R3 := min(A3,B3);

Corresponding intrinsic: _mm_min_ps

F32vec1 R = simd_min(F32vec1 A, F32vec1 B)

Compute the minimum of the lowest single precision floating-point values of A and B.

R0 := min(A0,B0);

Corresponding intrinsic: _mm_min_ss

F64vec2 simd_max(F64vec2 A, F64vec2 B)

 317

Compute the maximums of the two double precision floating-point values of A and B.

R0 := max(A0,B0);

R1 := max(A1,B1);

Corresponding intrinsic: _mm_max_pd

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)

Compute the maximums of the four single precision floating-point values of A and B.

R0 := max(A0,B0);

R1 := max(A1,B1);

R2 := max(A2,B2);

R3 := max(A3,B3);

Corresponding intrinsic: _mm_max_ps

F32vec1 simd_max(F32vec1 A, F32vec1 B)

Compute the maximum of the lowest single precision floating-point values of A and B.

R0 := max(A0,B0);

Corresponding intrinsic: _mm_max_ss

Logical Operators
The "Fvec Logical Operators Return Value Mapping" table lists the logical operators of the Fvec classes
and generic syntax. The logical operators for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation Operators Generic Syntax

AND &
&=

R = A & B;
R &= A;

OR |
|=

R = A | B;
R |= A;

XOR ^
^=

R = A ^ B;
R ^= A;

andnot andnot R = andnot(A);

 318

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is
no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the
packed vector intrinsics.

Logical Operations for Fvec Classes

Operation Returns Example Syntax Usage Intrinsic

AND 4 floats F32vec4 & = F32vec4 A & F32vec4 B;
F32vec4 & &= F32vec4 A;

_mm_and_ps

 2 doubles F64vec2 R = F64vec2 A & F32vec2 B;
F64vec2 R &= F64vec2 A;

_mm_and_pd

 1 float F32vec1 R = F32vec1 A & F32vec1 B;
F32vec1 R &= F32vec1 A;

_mm_and_ps

OR 4 floats F32vec4 R = F32vec4 A | F32vec4 B;
F32vec4 R |= F32vec4 A;

_mm_or_ps

 2 doubles F64vec2 R = F64vec2 A | F32vec2 B;
F64vec2 R |= F64vec2 A;

_mm_or_pd

 1 float F32vec1 R = F32vec1 A | F32vec1 B;
F32vec1 R |= F32vec1 A;

_mm_or_ps

XOR 4 floats F32vec4 R = F32vec4 A ^ F32vec4 B;
F32vec4 R ^= F32vec4 A;

_mm_xor_ps

 2 doubles F64vec2 R = F64vec2 A ^ F364vec2 B;
F64vec2 R ^= F64vec2 A;

_mm_xor_pd

 1 float F32vec1 R = F32vec1 A ^ F32vec1 B;
F32vec1 R ^= F32vec1 A;

_mm_xor_ps

ANDNOT 2 doubles F64vec2 R = andnot(F64vec2 A,
F64vec2 B);

_mm_andnot_pd

 319

Compare Operators
The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators Syntax

Equality cmpeq R = cmpeq(A, B)

Inequality cmpneq R = cmpneq(A, B)

Greater Than cmpgt R = cmpgt(A, B)

Greater Than or Equal To cmpge R = cmpge(A, B)

Not Greater Than cmpngt R = cmpngt(A, B)

Not Greater Than or Equal To cmpnge R = cmpnge(A, B)

Less Than cmplt R = cmplt(A, B)

Less Than or Equal To cmple R = cmple(A, B)

Not Less Than cmpnlt R = cmpnlt(A, B)

Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators

The mask is set to 0xffffffff for each floating-point value where the comparison is true and
0x00000000 where the comparison is false. The table below shows the return values for each class of
the compare operators, which use the syntax described earlier in the Return Value Notation section.

Compare Operator Return Value Mapping

R A0 For
Any
Operat
ors

B If True If False F32vec
4

F64vec
2

F32vec
1

R0:= (A1

!(A1

cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B1)
 B1)

0xffffffff 0x000000
0

X X X

 320

R A0 For
Any
Operat
ors

B If True If False F32vec
4

F64vec
2

F32vec
1

R1:= (A1

!(A1

cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B2)
 B2)

0xffffffff 0x000000
0

X X N/A

R2:= (A1

!(A1

cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B3)
 B3)

0xffffffff 0x000000
0

X N/A N/A

R3:= A3 cmp[eq |
lt | le | gt |
ge]
 cmp[ne |
nlt | nle |
ngt | nge]

B3)
 B3)

0xffffffff 0x000000
0

X N/A N/A

The Compare Operations for Fvec Classes table shows examples for arithmetic operators and intrinsics.

Compare Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R =
cmpeq(F32vec4 A);

_mm_cmpeq_ps

2 doubles F64vec2 R =
cmpeq(F64vec2 A);

_mm_cmpeq_pd

1 float F32vec1 R =
cmpeq(F32vec1 A);

_mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R =
cmpneq(F32vec4 A);

_mm_cmpneq_ps

2 doubles F64vec2 R =
cmpneq(F64vec2 A);

_mm_cmpneq_pd

1 float F32vec1 R =
cmpneq(F32vec1 A);

_mm_cmpneq_ss

Compare for Less Than

4 floats F32vec4 R =
cmplt(F32vec4 A);

_mm_cmplt_ps

 321

cmplt(F32vec4 A);

2 doubles F64vec2 R =
cmplt(F64vec2 A);

_mm_cmplt_pd

1 float F32vec1 R =
cmplt(F32vec1 A);

_mm_cmplt_ss

Compare for Less Than
or Equal

4 floats F32vec4 R =
cmple(F32vec4 A);

_mm_cmple_ps

2 doubles F64vec2 R =
cmple(F64vec2 A);

_mm_cmple_pd

1 float F32vec1 R =
cmple(F32vec1 A);

_mm_cmple_pd

Compare for Greater
Than

4 floats F32vec4 R =
cmpgt(F32vec4 A);

_mm_cmpgt_ps

2 doubles F64vec2 R =
cmpgt(F32vec42 A);

_mm_cmpgt_pd

1 float F32vec1 R =
cmpgt(F32vec1 A);

_mm_cmpgt_ss

Compare for Greater
Than or Equal To

4 floats F32vec4 R =
cmpge(F32vec4 A);

_mm_cmpge_ps

2 doubles F64vec2 R =
cmpge(F64vec2 A);

_mm_cmpge_pd

1 float F32vec1 R =
cmpge(F32vec1 A);

_mm_cmpge_ss

Compare for Not Less
Than

4 floats F32vec4 R =
cmpnlt(F32vec4 A);

_mm_cmpnlt_ps

2 doubles F64vec2 R =
cmpnlt(F64vec2 A);

_mm_cmpnlt_pd

 322

1 float F32vec1 R =
cmpnlt(F32vec1 A);

_mm_cmpnlt_ss

Compare for Not Less
Than or Equal

4 floats F32vec4 R =
cmpnle(F32vec4 A);

_mm_cmpnle_ps

2 doubles F64vec2 R =
cmpnle(F64vec2 A);

_mm_cmpnle_pd

1 float F32vec1 R =
cmpnle(F32vec1 A);

_mm_cmpnle_ss

Compare for Not
Greater Than

4 floats F32vec4 R =
cmpngt(F32vec4 A);

_mm_cmpngt_ps

2 doubles F64vec2 R =
cmpngt(F64vec2 A);

_mm_cmpngt_pd

1 float F32vec1 R =
cmpngt(F32vec1 A);

_mm_cmpngt_ss

Compare for Not
Greater Than or Equal

4 floats F32vec4 R =
cmpnge(F32vec4 A);

_mm_cmpnge_ps

2 doubles F64vec2 R =
cmpnge(F64vec2 A);

_mm_cmpnge_pd

1 float F32vec1 R =
cmpnge(F32vec1 A);

_mm_cmpnge_ss

 323

Conditional Select Operators for Fvec Classes
Each conditional function compares single-precision floating-point values of A and B. The C and D
parameters are used for return value. Comparison between objects of any Fvec class returns the same
class.

Conditional Select Operators for Fvec Classes

Conditional Select for: Operators Syntax

Equality select_eq R = select_eq(A, B)

Inequality select_neq R = select_neq(A, B)

Greater Than select_gt R = select_gt(A, B)

Greater Than or Equal To select_ge R = select_ge(A, B)

Not Greater Than select_gt R = select_gt(A, B)

Not Greater Than or Equal To select_ge R = select_ge(A, B)

Less Than select_lt R = select_lt(A, B)

Less Than or Equal To select_le R = select_le(A, B)

Not Less Than select_nlt R = select_nlt(A, B)

Not Less Than or Equal To select_nle R = select_nle(A, B)

Conditional Select Operator Usage

For conditional select operators, the return value is stored in C if the comparison is true or in D if false.
The following table shows the return values for each class of the conditional select operators, using the
Return Value Notation described earlier.

Compare Operator Return Value Mapping

R A0 Operat
ors

B C D F32vec
4

F64vec
2

F32vec
1

R0:= (A1

!(A1

select_[e
q | lt | le |
gt | ge]

select_[n
e | nlt |
nle | ngt |
nge]

B0)
 B0)

C0
 C0

D0
 D0

X X X

 324

R A0 Operat
ors

B C D F32vec
4

F64vec
2

F32vec
1

R1:= (A2

!(A2

select_[e
q | lt | le |
gt | ge]

select_[n
e | nlt |
nle | ngt |
nge]

B1)
 B1)

C1
 C1

D1
 D1

X X N/A

R2:= (A2

!(A2

select_[e
q | lt | le |
gt | ge]

select_[n
e | nlt |
nle | ngt |
nge]

B2)
 B2)

C2
 C2

D2
 D2

X N/A N/A

R3:= (A3

!(A3

select_[e
q | lt | le |
gt | ge]

select_[n
e | nlt |
nle | ngt |
nge]

B3)
 B3)

C3
 C3

D3
 D3

X N/A N/A

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns Example Syntax Usage Intrinsic

Compare for Equality

4 floats F32vec4 R =
select_eq(F32vec4 A);

_mm_cmpeq_ps

2 doubles F64vec2 R =
select_eq(F64vec2 A);

_mm_cmpeq_pd

1 float F32vec1 R =
select_eq(F32vec1 A);

_mm_cmpeq_ss

Compare for Inequality

4 floats F32vec4 R =
select_neq(F32vec4 A);

_mm_cmpneq_ps

2 doubles F64vec2 R =
select_neq(F64vec2 A);

_mm_cmpneq_pd

1 float F32vec1 R =
select_neq(F32vec1 A);

_mm_cmpneq_ss

 325

Compare for Less Than

4 floats F32vec4 R =
select_lt(F32vec4 A);

_mm_cmplt_ps

2 doubles F64vec2 R =
select_lt(F64vec2 A);

_mm_cmplt_pd

1 float F32vec1 R =
select_lt(F32vec1 A);

_mm_cmplt_ss

Compare for Less Than
or Equal

4 floats F32vec4 R =
select_le(F32vec4 A);

_mm_cmple_ps

2 doubles F64vec2 R =
select_le(F64vec2 A);

_mm_cmple_pd

1 float F32vec1 R =
select_le(F32vec1 A);

_mm_cmple_ps

Compare for Greater
Than

4 floats F32vec4 R =
select_gt(F32vec4 A);

_mm_cmpgt_ps

2 doubles F64vec2 R =
select_gt(F64vec2 A);

_mm_cmpgt_pd

1 float F32vec1 R =
select_gt(F32vec1 A);

_mm_cmpgt_ss

Compare for Greater
Than or Equal To

4 floats F32vec1 R =
select_ge(F32vec4 A);

_mm_cmpge_ps

2 doubles F64vec2 R =
select_ge(F64vec2 A);

_mm_cmpge_pd

1 float F32vec1 R =
select_ge(F32vec1 A);

_mm_cmpge_ss

Compare for Not Less
Than

4 floats F32vec1 R =
select_nlt(F32vec4 A);

_mm_cmpnlt_ps

 326

2 doubles F64vec2 R =
select_nlt(F64vec2 A);

_mm_cmpnlt_pd

1 float F32vec1 R =
select_nlt(F32vec1 A);

_mm_cmpnlt_ss

Compare for Not Less
Than or Equal

4 floats F32vec1 R =
select_nle(F32vec4 A);

_mm_cmpnle_ps

2 doubles F64vec2 R =
select_nle(F64vec2 A);

_mm_cmpnle_pd

1 float F32vec1 R =
select_nle(F32vec1 A);

_mm_cmpnle_ss

Compare for Not
Greater Than

4 floats F32vec1 R =
select_ngt(F32vec4 A);

_mm_cmpngt_ps

2 doubles F64vec2 R =
select_ngt(F64vec2 A);

_mm_cmpngt_pd

1 float F32vec1 R =
select_ngt(F32vec1 A);

_mm_cmpngt_ss

Compare for Not
Greater Than or Equal

4 floats F32vec1 R =
select_nge(F32vec4 A);

_mm_cmpnge_ps

2 doubles F64vec2 R =
select_nge(F64vec2 A);

_mm_cmpnge_pd

1 float F32vec1 R =
select_nge(F32vec1 A);

_mm_cmpnge_ss

 327

Cacheability Support Operations
void store_nta(double *p, F64vec2 A);

Stores (non-temporal) the two double-precision floating-point values of A. Requires a 16-byte aligned
address.

Corresponding intrinsic: _mm_stream_pd

void store_nta(float *p, F32vec4 A);

Stores (non-temporal) the four single precision floating-point values of A. Requires a 16-byte aligned
address.

Corresponding intrinsic: _mm_stream_ps

Debugging
The debug operations do not map to any compiler intrinsics for MMX(TM) technology or Streaming SIMD
Extensions. They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations

cout << F64vec2 A;

The two single double precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

"[1]:A1 [0]:A0"

Corresponding intrinsics: none

cout << F32vec4 A;

The four single precision floating-point values of A are placed in the output buffer and printed in decimal
format as follows:

"[3]:A3 [2]:A2 [1]:A1 [0]:A0"

Corresponding intrinsics: none

cout << F32vec1 A;

The lowest single precision floating-point value of A is placed in the output buffer and printed.

Corresponding intrinsics: none

 328

Element Access Operations

double d = F64vec2 A[int i]

Read one of the two double precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0 and 1. For example:

double d = F64vec2 A[1];

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed
and the program aborts.

Corresponding intrinsics: none

float f = F32vec4 A[int i]

Read one of the four single precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 A[2];

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and
the program aborts.

Corresponding intrinsics: none

Element Assignment Operations

F64vec4 A[int i] = double d;

Modify one of the two double precision floating-point values of A. Permitted values of int i are 0 and 1.
For example:

F32vec4 A[1] = double d;

F32vec4 A[int i] = float f;

Modify one of the four single precision floating-point values of A. Permitted values of int i are 0, 1, 2, and
3. For example:

F32vec4 A[3] = float f;

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.

Corresponding intrinsics: none.

 329

Load and Store Operators
void loadu(F64vec2 A, double *p)

Loads two double-precision floating-point values, copying them into the two floating-point values of A. No
assumption is made for alignment.

Corresponding intrinsic: _mm_loadu_pd

void storeu(float *p, F64vec2 A);

Stores the two double-precision floating-point values of A. No assumption is made for alignment.

Corresponding intrinsic: _mm_storeu_pd

void loadu(F32vec4 A, double *p)

Loads four single-precision floating-point values, copying them into the four floating-point values of A. No
assumption is made for alignment.

Corresponding intrinsic: _mm_loadu_ps

void storeu(float *p, F32vec4 A);

Stores the four single-precision floating-point values of A. No assumption is made for alignment.

Corresponding intrinsic: _mm_storeu_ps

Unpack Operators for Fvec Operators
F64vec2 R = unpack_low(F64vec2 A, F64vec2 B);

Selects and interleaves the lower double precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpacklo_pd(a, b)

F64vec2 R = unpack_high(F64vec2 A, F64vec2 B);

Selects and interleaves the higher double precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpackhi_pd(a, b)

F32vec4 R = unpack_low(F32vec4 A, F32vec4 B);

Selects and interleaves the lower two single precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpacklo_ps(a, b)

 330

F32vec4 R = unpack_high(F32vec4 A, F32vec4 B);

Selects and interleaves the higher two single precision floating-point values from A and B.

Corresponding intrinsic: _mm_unpackhi_ps(a, b)

Move Mask Operator
int i = move_mask(F64vec2 A)

Creates a 2-bit mask from the most significant bits of the two double precision floating-point values of A,
as follows:

i := sign(a1)<<1 | sign(a0)<<0

Corresponding intrinsic: _mm_movemask_pd

int i = move_mask(F32vec4 A)

Creates a 4-bit mask from the most significant bits of the four single precision floating-point values of A,
as follows:

i := sign(a3)<<3 | sign(a2)<<2 | sign(a1)<<1 | sign(a0)<<0

Corresponding intrinsic: _mm_movemask_ps

Classes Quick Reference
This appendix contains tables listing the class, functionality, and corresponding intrinsics for each class in
the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel C++ Compiler
intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operator
s

Correspo
nding
Intrinsics

I128vec1,
I64vec2,
I32vec4,
I16vec8,
I8vec16

I64vec,
I32vec,
I16vec,
I8vec8

F64vec2 F32vec4 F32vec1

&, &= _mm_and
_[x]

si128 si64 pd ps ps

|, |= _mm_or_
[x]

si128 si64 pd ps ps

^, ^= _mm_xor
_[x]

si128 si64 pd ps ps

Andnot _mm_and
not_[x]

si128 si64 pd N/A N/A

 331

Arithmetic: Corresponding Intrinsics and Classes

Oper
ators

Corr
espo
ndin
g
Intrin
sic

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64v
ec2

F32v
ec4

F32v
ec1

+, += _mm_
add_
[x]

epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

-, -= _mm_
sub_
[x]

epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

*, *= _mm_
mull
o_[x
]

N/A N/A epi16 N/A N/A pi16 N/A pd ps ss

/, /= _mm_
div_
[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

mul_hi
gh

mm
mulh
i_[x
]

N/A N/A epi16 N/A N/A pi16 N/A N/A N/A N/A

mul_a
dd

mm
madd
_[x]

N/A N/A epi16 N/A N/A pi16 N/A N/A N/A N/A

sqrt _mm_
sqrt
_[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

rcp _mm_
rcp_
[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

rcp_nr _mm_
rcp_
[x]

mm
add_
[x]

mm
sub_
[x]

mm
mul_
[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

 332

Oper
ators

Corr
espo
ndin
g
Intrin
sic

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64v
ec2

F32v
ec4

F32v
ec1

rsqrt _mm_
rsqr
t_[x
]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

rsqrt_n
r

mm
rsqr
t_[x
]

mm
sub_
[x]

mm
mul_
[x]

N/A N/A N/A N/A N/A N/A N/A pd ps ss

Shift Operators: Corresponding Intrinsics and Classes

Oper
ators

Corre
spon
ding
Intrin
sic

I128v
ec1

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I64ve
c1

I32ve
c2

I16ve
c4

I8vec
8

>>,>>= _mm_
srl_
[x]

mm
srli
_[x]

mm
sra_
_[x]

mm
srai
_[x]

N/A
 N/A
 N/A
 N/A

epi64
 epi64
 N/A
 N/A

epi32
 epi32
 epi32
 epi32

epi16
 epi16
 epi16
 epi16

N/A
 N/A
 N/A
 N/A

si64
 si64
 N/A
 N/A

pi32
 pi32
 pi32
 pi32

pi16
 pi16
 pi16
 pi16

N/A
 N/A
 N/A
 N/A

<<, <<= _mm_
sll_
[x]

mm
slli
_[x]

N/A

N/A

epi64
 epi64

epi32
 epi32

epi16
 epi16

N/A
 N/A

si64

si64

pi32
 pi32

pi16
 pi16

N/A
 N/A

 333

Comparison Operators: Corresponding Intrinsics and Classes

Oper
ators

Corre
spon
ding
Intrin
sic

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64ve
c2

F32ve
c4

F32ve
c1

cmpeq _mm_
cmpe
q_[x
]

epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmpneq _mm_
cmpe
q_[x
]

mm
andn
ot_[
y]*

epi32
 si128

epi16
 si128

epi8
 si128

pi32
 si64

pi16
 si64

pi8
 si64

pd ps ss

cmpgt _mm_
cmpg
t_[x
]

epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmpge _mm_
cmpg
e_[x
]

mm
andn
ot_[
y]*

epi32
 si128

epi16
 si128

epi8
 si128

pi32
 si64

pi16
 si64

pi8
 si64

pd ps ss

cmplt _mm_
cmpl
t_[x
]

epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

cmple _mm_
cmpl
e_[x
]

mm
andn
ot_[
y]*

epi32
 si128

epi16
 si128

epi8
 si128

pi32
 si64

pi16
 si64

pi8
 si64

pd ps ss

cmpngt _mm_
cmpn
gt_[
x]

epi32 epi16 epi8 pi32 pi16 pi8 pd ps ss

 334

Oper
ators

Corre
spon
ding
Intrin
sic

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64ve
c2

F32ve
c4

F32ve
c1

cmpnge _mm_
cmpn
ge_[
x]

N/A N/A N/A N/A N/A N/A pd ps ss

cmnpnlt _mm_
cmpn
lt_[
x]

N/A N/A N/A N/A N/A N/A pd ps ss

cmpnle _mm_
cmpn
le_[
x]

N/A N/A N/A N/A N/A N/A pd ps ss

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Conditional Select Operators: Corresponding Intrinsics and Classes

Oper
ators

Corre
spon
ding
Intrin
sic

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64ve
c2

F32ve
c4

F32ve
c1

select_
eq

mm
cmpe
q_[x
]

mm
and_
[y]

mm
andn
ot_[
y]*

mm
or_[
y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

 335

Oper
ators

Corre
spon
ding
Intrin
sic

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64ve
c2

F32ve
c4

F32ve
c1

select_
neq

mm
cmpe
q_[x
]

mm
and_
[y]

mm
andn
ot_[
y]*

mm
or_[
y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_
gt

mm
cmpg
t_[x
]

mm
and_
[y]

mm
andn
ot_[
y]*

mm
or_[
y]

epi32
 si128
 si128
 si128

epi16
 si128

si128si
128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_
ge

mm
cmpg
e_[x
]

mm
and_
[y]

mm
andn
ot_[
y]*

mm
or_[
y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

 336

Oper
ators

Corre
spon
ding
Intrin
sic

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64ve
c2

F32ve
c4

F32ve
c1

select_l
t

mm
cmpl
t_[x
]

mm
and_
[y]

mm
andn
ot_[
y]*

mm
or_[
y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_l
e

mm
cmpl
e_[x
]

mm
and_
[y]

mm
andn
ot_[
y]*

mm
or_[
y]

epi32
 si128
 si128
 si128

epi16
 si128
 si128
 si128

epi8
 si128
 si128
 si128

pi32
 si64
 si64
 si64

pi16
 si64
 si64
 si64

pi8
 si64
 si64
 si64

pd ps ss

select_
ngt

mm
cmpg
t_[x
]

N/A N/A N/A N/A N/A N/A pd ps ss

select_
nge

mm
cmpg
e_[x
]

N/A N/A N/A N/A N/A N/A pd ps ss

select_
nlt

mm
cmpl
t_[x
]

N/A N/A N/A N/A N/A N/A pd ps ss

select_
nle

mm
cmpl
e_[x
]

N/A N/A N/A N/A N/A N/A pd ps ss

 337

Oper
ators

Corre
spon
ding
Intrin
sic

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64ve
c2

F32ve
c4

F32ve
c1

* Note that _mm_andnot_[y] intrinsics do not apply to the fvec classes.

Packing and Unpacking Operators: Corresponding Intrinsics and Classes

Oper
ators

Corr
espo
ndin
g
Intrin
sic

I64ve
c2

I32ve
c4

I16ve
c8

I8vec
16

I32ve
c2

I16ve
c4

I8vec
8

F64v
ec2

F32v
ec4

F32v
ec1

unpack
_high

mm
unpa
ckhi
_[x]

epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps N/A

unpack
_low

mm
unpa
cklo
_[x]

epi64 epi32 epi16 epi8 pi32 pi16 pi8 pd ps N/A

pack_s
at

mm
pack
s_[x
]

N/A epi32 epi16 N/A pi32 pi16 N/A N/A N/A N/A

packu_
sat

mm
pack
us_[
x]

N/A N/A epi16 N/A N/A pu16 N/A N/A N/A N/A

sat_ad
d

mm
adds
_[x]

N/A N/A epi16 epi8 N/A pi16 pi8 pd ps ss

sat_su
b

mm
subs
_[x]

N/A N/A epi16 epi8 N/A pi16 pi8 pi16 pi8 pd

Conversions Operators: Corresponding Intrinsics and Classes

Operators Corresponding
Intrinsic

F64vec2ToInt _mm_cvttsd_si32

F32vec4ToF64vec2 _mm_cvtps_pd

F64vec2ToF32vec4 _mm_cvtpd_ps

IntToF64vec2 _mm_cvtsi32_sd

 338

Operators Corresponding
Intrinsic

F32vec4ToInt _mm_cvtt_ss2si

F32vec4ToIs32vec2 _mm_cvttps_pi32

IntToF32vec4 _mm_cvtsi32_ss

Is32vec2ToF32vec4 _mm_cvtpi32_ps

Programming Example
This sample program uses the F32vec4 class to average the elements of a 20 element floating point
array. This code is also provided as a sample in the file, AvgClass.cpp.

// Include Streaming SIMD Extension Class Definitions

#include <fvec.h>

// Shuffle any 2 single precision floating point from a
// into low 2 SP FP and shuffle any 2 SP FP from b
// into high 2 SP FP of destination

#define SHUFFLE(a,b,i) (F32vec4)_mm_shuffle_ps(a,b,i)
#include <stdio.h>
#define SIZE 20

// Global variables

float result;
_MM_ALIGN 16 float array[SIZE];

//***
// Function: Add20ArrayElements
// Add all the elements of a 20 element array
//***

void Add20ArrayElements (F32vec4 *array, float *result)

{
F32vec4 vec0, vec1;
vec0 = _mm_load_ps ((float *) array); // Load array's first 4 floats

//***
// Add all elements of the array, 4 elements at a time
/**

vec0 += array[1];// Add elements 5-8
vec0 += array[2];// Add elements 9-12
vec0 += array[3];// Add elements 13-16
vec0 += array[4];// Add elements 17-20

 339

//***
// There are now 4 partial sums. Add the 2 lowers to the 2 raises,
// then add those 2 results together
//***

vec1 = SHUFFLE(vec1, vec0, 0x40);
vec0 += vec1;
vec1 = SHUFFLE(vec1, vec0, 0x30);
vec0 += vec1;
vec0 = SHUFFLE(vec0, vec0, 2);

_mm_store_ss (result, vec0); // Store the final sum

}
void main(int argc, char *argv[])
{

int i;
// Initialize the array

for (i=0; i < SIZE; i++)

{
array[i] = (float) i;
}

// Call function to add all array elements
Add20ArrayElements (array, &result);

// Print average array element value
printf ("Average of all array values = %f\n", result/20.);
printf ("The correct answer is %f\n\n\n", 9.5);

}

